
-Film Lighting • Television Lighting • Stage Lighting • Architectural Lighting •

SECTION I

SECTION 2

SECTION 3

SECTION 4

SECTION 5

SECTION 6

SECTION 7

STRANDBOOK

trand have designed the Strandbook to be a comprehensive catalogue of all Strand Lighting products, as well as a reference manual for anybody interested in stage and studio lighting.

CONTENTS

PAGES

STRAND LIGHTING 1914-1989
 CONTROLS AND DIMMERS

1-3

THE STORY OF STRAND MEMORY LIGHTING CONTROLS $\mathbf{4 5}$
MANUAL AND MEMORY LIGHTING CONTROLS 6-11
CONTROLS COMPARISON CHART
PORTABLE DIMMER PACKS
PROFESSIONAL DIMMER RACKS
ARCHITECTURAL LIGHTING
DIMMERS AND CONTROLS \quad 15-18
AUTOMATED LIGHTING SYSTEMS
$\begin{array}{ll}\text { THE PAL SYSTEM } & 19-21\end{array}$
SHOWCHANGERS $\quad 22$
stage lighting
A GUIDE TO LIGHTING THE SMALLER SCALE PRODUCTION \quad 23-32
INTRODUCTION TO STRAND LUMINAIRES 33
SPOTLIGHTS $\quad 34$-39
EFFECTS PROJECTOR \& EFFECTS 39
FOLLOW SPOTS 40
HARD-EDGE SPOTLIGHTS 41
FLOODLIGHTS AND CYCLIGHTS 42-43
BEAMLIGHTS

STUDIO, PORTABLE AND LOCATION LIGHTING

A GUIDE TO LIGHTING FOR TELEVISION \quad 45-52
INTRODUCTION TO QUARTZCOLOR LUMINAIRES
PORTABLE LIGHTING $\quad 53-55$
PORTABLE LIGHTING KITS $\quad 56$-59
STUDIO LIGHTING \quad 59-68
HIMI DAYLIGHT LIGHTING \quad 69-73
ACCESSORIES
LAMPS $\quad 7477$
$\begin{array}{ll}\text { CABLES \& CONNECTORS } & \text { 78-79 }\end{array}$
CLAMPS, BRACKETS \& INTERNALLY WIRED BARRELS 88
GRIP EQUIPMENT 80-81
STANDS $\quad 82-83$
$\begin{array}{ll}\text { LIGHTRIG } & 84-86\end{array}$
SUSPENSION AND MOUNTING EQUIPMENT
COLOUR FILTERS

INTRODUCTION	87

$\begin{array}{ll}\text { CINELUX FILTERS } & 88 \\ 88\end{array}$
CHROMOID FILTERS 89
COLOUR CHANGERS 89
HOW TO PICKA COLOUR 90
FILTER CHART 91
GENERAL INFORMATION
SERVICE, CUSTOM ENGINEERING, PROJECT SERVICES 92
ORDERING PROCEDURES AND U.K. DISTRIBUTORS 93
STRAND SUBSIDIARIES AND OVERSEAS DISTRIBUTORS $\quad 94$
INDEX OF BRAND NAMES

To help you find a known product there is a brand name index at the back. Alternatively if you are not sure which product suits your needs turn to the relevant section such as stage, or television and browse through until you find what suits your requirements.
Each product has an item number which you will need to use when making enquiries or placing an order with Strand.
This item number corresponds to the separate price list.

For example to obtain the price of Minim 23, the item number is 2231000 , turn to the price list which is arranged in item number order until you reach the correct number. This will give you a price for Minim. Data sheets are available on all Strand and Quartzcolor luminaires, manual control desks, dimmer packs and racks, the smaller memory lighting systems, and associated accessories for both stage and studio use.
(C) Strand Lighting Limited

1914

Strand Lighting

-Showchangers and Moving Visions Dance Theatre - a professional dance company bosed at Ballet Rambert Schoal. Director, Ross McKim.

[n the heart of London's theatreland seventy five years ago a business was born - Strand Electric. Arthur Earnshaw and

Phillip Sheridan were both London theatre electricians when they set up their company. Looking back, 1914 might not have seemed the most auspicious year in which to start a business;

A At right, HM Queen Elizabeth II, with Princess Margaret and the Queen Mother, playing in a wartime pantomime production at Windsor - lit by Strand.
Atrand batch production - judging by the voluminous cut of the trousers, a mid-thirties shot showing what was probably a week's production of follow spots. Today it would be c disoppointing single shift's output at Kirkcaldy: yet, almost from the start, its story is studded with the names of famous people, productions and theatres, and with a succession of technical achievements.

1989 - and the story goes on...

- For the musical 'Chess' at the Prince Edward Theatre, London, Strand supplied equipment for dimming the fluorescent lighting used in the squares of the chessboard, forming the spectacular floor of the stoge. This was operated from a Light Polette 3 memory lighting system installed by Strand, who troined theatre stoff in its operation and first line mainterance. Lighting designed by David Hersey.

\triangle BBC Woles, Cardiff,

Studio CI. The frist TV studio in the U.K. to use Strond's MMS memory lighting system. Equipped with Quartzcolor luminaires.

The real breakthrough London Coliseum 1952 and one of Fred Bentham's Light Consoles The organ technology derivation is very obvious!

Many Pizza Hut fast food restourants in the UK are Strand equipped with commercial preset dimmers.
\rightarrow A Kiss Concert using Strand remote controlled luminaires and memory lighting control system.

- At the British Harvest Restourant, London Hilton, Park Lane, WI, Strand commercial dimmers controla mixture of tungsten and fluorescent lighting.

Strand's PAL system is used to light Andrew Lloyd Weber's musical 'Aspects of Love'.

D During the building of Sky Television Studios, Strond's Project Services was involved in the conception; acting as a consultant to Sky, they attended co-ordination meetings with the architect, interfacing bodies such as Sony, and the on site team to ensure the smooth running of the project until its completion.

This spectacular long narrow dining room, with a view of the Dallas skyline belongs to real estate developer Henry 5 Miller. The residence features a Strand Lighting preset dimming system developed so that each station acts as a control for the specific room in which it is locoted. Lighting designed by Craig Roeder.

R

 esearch and development has always played an important part in the company's progress. In the long Strand tradition of product innovation, many of today's developments are exciting and even revolutionary for the industry - such as Precision Automated Lighting Systems, advanced new luminaire features and sophisticated memory lightingcontrols. But, there is
continuous improvement across the whole product range as well, bringing to lighting designers and operators the benefits of the latest technology in the form of higher performance, increased reliability and safety, and maximum economy
\Rightarrow PALS installation at the 'Maison de lo Culture' theatre, St. Etienne, France. This picture shows part of the F.O.H, rig of Cadenzo luminaires fitted with PALS equipment.

- PALS Lighting Rig in Studio at VTO-Medienzentrum Studio Complex, Hannover, showing Golaxy Studio remote lighting control on the studio floor.

...never felt better!

Direct from Strand Lighting, or through its network of regional distributors Strand provides to every customer, a helpful personalised service in lighting, second to none. Should you need technical

STRAND MEMORY LIGHTING CONTROLS

The story of a technological revolution...

W ith micro-processor-based lighting control now the industry standard, it is interesting to look back to the predecessors of today's high-powered memory systems. Galaxy 3, Gemini 2, Lightboard M and the others in Strand's comprehensive range of control desks are all part of a proud heritage. In 1967, Strand pioneered the development of memory lighting control with the introduction of the Instant Dimmer Memory system. Nine generations of control later, and with over 2000 installations worldwide, Strand maintains its reputation for innovation and quality in the world of professional lighting control.

IDM/MSR

1967
Installations: 20

DDM
1971
Installations: 18

MMS

1973
Installations: 208

$T^{\text {te }}$he world's first memory lighting control, the IDM/DL arose out of the need to advance from a three preset manual fader desk to means of recording the fader levels and instantly reproducing them during the performance. The first installation in June 1968 in Schweinfurt, was followed by Budapest Opera and the Coliseum, London. With its push button IDM/R variant (the prototype of the DDM) and the later redesigned MSR system, 20 systems were installed around the world.
he operational advantages of IDM's recorded presets were hampered by the cumbersome procedure required to re-recond a modified lighting state. A system which addressed this problem whilst retaining immediate access to any channel was the push button version of IDM (the $/ \mathbb{R}$ for Rocker switch) which became the conceptual prototype for the first software computer lighting control. The DDM (Digital Dimmer Memory) was developed for the Royal Shakespeare Theatre, Stratford-upon-Avon, but immediately became recognised as the major world-class memory lighting control.

MS (Modular Memory System) was the first mass produced memory control and jumped two hurdles in a single stride: it took full advantage of low-priced integrated circuit technology, and dispensed with a rocker switch per channel in favour of a calculator keypad and wheel, to control up to 480 channels. A range of user selectable modules gave theatres and TV studios in 30 countries the chance to light with a custom-designed control at an affordable price.

he overwhelming success of MMS led to a smaller, transportable, compact MMS system with fixed facilities for up to 120 channels. Three versions of the Compact were produced and supplied to theatres and television companies worldwide.

LIGHTBOARD

 1976Installations: II

Strand Lighting
015603171

'he exacting production schedules forecast for London's National Theatre led Richard Pilbrow, its consultant, and chairman of Theatre Projects, to develop the concept for a fully saturated lighting rig, controlled by highly sophisticated purpose-designed lighting control. Lightboard pioneered control of 1000 channels, total control of lighting intensity, position and colour, the power ful latest-action-takesprecedence principles and multiple timed fades.

DUET

1978
Installations: 500+

GALAXY

1980
Installations: 300+

TEMPUS M24
1983
Installations: 800 +

AN
INTRODUCTION TO MULTIPLEXING

M
ultiplexed control is a term frequently encountered in the technical literature of stage lighting equipment, including this catalogue. The following summary may be a helpful layman's guide to the subject.

WHAT IS IT?

Multiplexing is a widely-used technique which allows large numbers of electrical signals to be transmitted along a single wire in sequence. In lighting control, this techrique is applied to control levels for dimmers. Signals representing different dimmer levels can be transmitted one after the other hundreds of times a second along the same wire.

WHAT'S THE ADVANTAGE?

In traditional or analogue lighting control systems, each channel is connected directly to its dimmer by its own dedicated wire. The larger the number of dimmers, the more wires are required. With multiplexing, no matter how many dimmers there are, connection is made to all of them using only one control wire. So costs are saved with complex systems.

WHY IS IT NECESSARY?

Because of new technology, systems are now much larger than they used to be - several hundred dimmers may be controlled from one source. Also, for operational reasons, controls are now frequently operated remote from dimmers which are located in an electrical equipment room convenient for incoming power. Wiring up by conventional means can result in expensive and unwieldy installations.

HOW DOES IT WORK?

Controi channels and the desk electronics generate low voltage multiplexed signals which determine the dimmer levels and so the brightness of the light. Samples of each signal in turn are transmitted along the control wire. At the dimmers, a demultiplexer decodes the signals and routes the correct voltage to each dimmer in turn.
The rapid sampling of the dimmer signals ensures that lighting levels keep up with changes as they are required, as for a fade, or when a channel potentiometer is moved. Between sighals, the demultiplexer holds the levels so there is no drifting.

WHERE DOES IT APPLY TO STRAND CONTROLS? With the exception of the very simple ACT and Tempus 2G desks, all of Strand's controls utilise multiplex technology for efficiency and installation cost benefits. PIP and Fermus dimmer racis accept either analogue or multiplexed control signals for compatibility with Strand multiplexed contro's or the analogue controls of other manufacturers. Separate demultiplexers are available to permit use of Strand consoles with older, analogue dimmers.

CONTROLS AND DIMMERS
LIGHTING CONTROLS

STRAND CONTROLS TODAY

The Strand range of lighting controls and dimmers extends from compact and versatile portable dimmer packs with local fader control to the sophisticated Galaxy 3 memory lighting system with 999 channels controlling up to 1536 dimmers.

ACT MANUAL DESKS

traightforward manual control for systems up to 24 dimmers. Act 12, 18 and 24 provide the following features:

- Two scene preset operation
- Split dipless crossfader with
fade time ability
- Dead blackout switch on each scene
- Analogue control output

Act 6D offers six manual faders and a master

TEMPUS 2G

ore advanced two scene preset operation with the additional benefit of grouping.

- Two scene preset controls in 12, 18,24 or 36 channels
- Two group faders per scene
- Blackout switches for each scene
Group selection switches on each channel
Flash buttons with on or off selection
Split dipless crossfader with fade time ability
- Grand Master

015603171

ACT CONTROL DESKS
Act 6D Control, single
Preset Desk with master
fader
0462006
12-channel,
2-preset Act desk
0462012
18-channel,
2-preset Act desk
0462018

24-channel,

2-preset Act desk
0462024

TEMPUS 2G CONTROL DESKS
12-channel,
2-preset, 4-group Tempus 2G desk

0441202

18-channel,

2-preset, 4-group Tempus 2G desk

0441805

24-channel,

2-preset, 4-group Tempus 2G desk

0442400

36-channel,

2-preset, 4-group Tempus 2G desk

0443609

Accessories

Pair of wall mounting brackets for any Act or Tempus desk, except Act 60437402

Act or Tempus Desk

5 metres of 6-channel control extension cable with mating plug and socket 0435006

Act or Tempus Desk

19 metres of 6 -channel contro extension cable with mating plug and socket 0435101

Twin 8-pin control socket

box wired to terminals
04372 IT
Quad 8-pin control socket
box wired to terminals
0437315
All the obove desks have a
2 metre analogue control
coble, for each multiple of 6
channels, to plug in to a portable dimmer pack/or to a control socket

ACTION CONTROL DESKS

A

24 or 48 manual faders with flash to full or off

- 99 memories

Digital keypad for memory and effects selection

- Split dipless crossfader. timed or manual with LED display
- Memory load pushbuttons
- LED display of memory numbers
- Blind recording and modification
- Nine special effects - Manual output master - Write-on strip - Multiplexed output - Dust cover included - Optional work lamp

Action $24,7.6 \mathrm{~kg}$

TEMPUS M24

el-established, small to medium sized memory system for up to 120 channels. Optional special effects desk also acts as backup to the M24

TEMPUS M24FX
esigned to operate either independently as a special effects desk, or in combination with M24 for submastering, special effects and backup.

[^0]

24 to 120 channels

- Up to 199 memories
- Digital address of channels and memories
Wheel for level setting
LED displays for Level Channel and Memory information
- Blind recording and modification
- Fade time recording and over-ride
- Multiplexed output
- Optional monochrome VDU and cassette for
library storage
- Optional manual desks for setup and recording

Eight faders for group control

- Flash buttons for six faders
- Eight three position
switches for fader mode selection
- Chase, Flash and Sound to Light input
Effects master
- Digital keypad for channel address

M24 CONTROL DESK

Portable control desk with moulded cover, 5 metres of multiplex mains cable, TV and tape recorder cables, and handbook.
24 channels, 199 memories 48 channels, 199 memories 60 channels, 185 memories 72 channels, 155 memories

0370000
96 to 120 channel.
99 Memory M24
03700 00/120
73 to 120 channel
expansion kit for M24
0370200

M24FX CONTROL
 DESK

To complement the M24 control desk. Provided with moulded cover, 5 metres of multiplex cable, mains lead and handbook.
M24FX 120 channels
0370308

SECTION I

CONTROLS AND DIMMERS
LIGHTING CONTROLS

LIGHTBOARD M

- he overwhelmingly popular new memory system, ideal for multipurpose installations.
- 96 or 144 digitally addressable channels
- Electronic patching for up

All consoles shown below provide 96 digitally addressable channels. Two scene preset control is provided by the indicated number of faders.

Plon measurements apply to the following two consoles.
Two scenes of 36 faders, 24 subs, 200 memories

7308813
Two scenes of 48 faders,
24 subs, 200 memories
7308814

Plon measurements apply to the following six consoles. to 768 dimmers

- 24 or 48 completely overlapping submasters with flash and solo
- Two scene preset manual faders in modules of tweive channels, up to the maximum of 144
- Split dipless crossfader, timed or manual
- Timed X-fader with programmable waits and delays
Up to 200 memories
Two special effects faders
8 programmable function keys
- $31 / 2^{\prime \prime}$ disc drive
- Colour monitor
- Internal backup system
- Full range of optional equipment

Two scenes of 60 faders, 24 subs, 200 memories
$73088 \quad 15$
Two scenes of 72 faders,
24 subs, 200 memories
7308816
Two scenes of 84 faders,
24 subs, 200 memories
7308817
Two scenes of 48 faders, 48 subs, 200 memories

7308824
Two scenes of 60 faders,
48 subs, 200 memories
7308825
Two scenes of 72 faders.
48 subs, 200 memories
7308826

Plon measurements opply to the following three consoles.
Two scenes of 96 faders,
24 subs, 200 memories
7308818
Two scenes of 84 faders,
48 subs, 200 memories
7308827
Two scenes of 96 faders, 48 subs, 200 memories

7308828
The following consoles provide I44 digitally addressable channels. Two scene preset control is provided by the indicated number of faders.

Plon measurements apply to the following four consoles.
Two scenes of 108 faders,
24 subs, 140 memories
7308819
Two scenes of 120 faders,
24 subs, 140 memories
7308820
Two scenes of 132 faders,
24 subs, 140 memories
7308821
Two scenes of 144 faders,
24 subs, 140 memories
7308822
Pleose note that 48 submasters ore only possible in systems of 96 channels or less.

Each console is complete with full colour VDU, $31 / 2^{\prime \prime}$ disc drive for library storoge, mains coble, control cables, plotiamp, and a box of 10 diskettes.

Accessories

Dual Electronic Backup for 96 channel systems $\mathbf{7 3 9 0 0 0 1}$
Dual Electronic Backup for 144 channel systems

7390002
Designer's Control, providing all channel access, level setting and memory recording functions. Includes control cable and battery charger

7308164

	73
Printer	$\mathbf{7 3 0 8 8 5 2}$

Colour VDU (additional)
7308850
Monochrome VDU
7308851
Taskmaster control module for control of Pans Tilt and Colour Change for the Showchanger Parscan II. For inclusion with Lightboard M add suffix ITM to the item numbers specified in the odjacent two columns.
Vinyl cover for $331 / 2^{\prime \prime}$
consoles $\quad \mathbf{7 3 0 8 8 9 3}$
Vinyl cover for $451 / 2^{\prime \prime}$
consoles $\quad \mathbf{7 3 0 8 8 9 4}$
Vinyl cover for $531 / 2^{\prime \prime}$
consoles
7308895

96 or 144 digitally addressable channels

- Electronic patch to 768 dimmers
- 24 submasters which may act as chiannel controls
- Two dipless crossfaders, one manual, one timed with programmable waits and delays
- Special effects package with dual faders
- Colour monitor
- $31 / 2^{\prime \prime}$ disc drive
- Up to 200 memories - Internal backup

LBMIJIr. with 96 channels, 200 memories, 24 submasters, disc, colour monitor, mains and control cables, plotlamp. and a box of 10 diskettes.

LBM/Jr. with 144 channels, 140 memories, 24 submasters, disc, colour monitor, mains and control cables, plotlamp, and a box of 10 diskettes.
$7300810 / 144$

Accessories

Designer's Control for channel and memory functions. Includes control cable and battery charger.

	7308164
Printer	7308852

Colour VDU (additional)
7308850

Monochrome VDU	
	7308851

IMPACT

Anew look and a new approach to mid-range lighting control.

350 control channels with proportional patching to 768 dimmers
Two timed playback faders with programmable split times, delays, and follow-on

- One manual split dipless crossfader
20 overlapping scene masters
- Four programmable inhibit masters
- Flash buttons with selectable exclude-from-record and solo operation
- Two keypads for channel and memory selection
- Blind recording and modification
High resolution colour VDU
31/2" dise drive
- Outboard backup module
- Optional link to second console for expansion to control of 700 channels or full tracking backup

GEMINI 2

- opular memory control with the most
comprehensive programmable special effects in the industry, now redesigned and more powerful than ever.

240 channels with proportional patching to 384 dimmers

- Memory list, Patch and Submaster displays
- Two split crossfaders, timed or manual
- Eight submasters with inhibit and flash
- 99 user programmable special effects with sound to light input and rate control
- Integral disc storage
- High resolution colour VDU with redesigned display5
- Comprehensive backup provided as standard

IMPACT CONTROL

 CONSOLEPortable console for control of 350 channels, complete with colour monitor and backup module. Supplied with 5 metres data cable, IEC connector and operator's handbook

7308410

Accessories

Designer's Control for channel and memory access including recording and playback; battery charge and cable.

7308420
Printer for hard copy printout of cues, patch, submaster assignments and other recorded information,

7308852

GEMINI 2 MEMORY CONTROL
Portable console for control of 240 channels and 384 dimmers, providing special effects, backup, library storage and colour monitor as standard. Supplied with 5 metres of data cable, 2 metres of mains cable and operator's handbook

0381100

Accessories

Designer's Control for wired or infra-red operation, provides channel control, recording and playback facilities. Supplied with a set of connectors, battery charger and 13 amp socket

0255002
Infra-red Receiver, for use with Designer's Control

0255203
Rigger's Control for control of individual channels for focusing. Supplied with a set of connectors, battery
charger and 13 amp socket
0254005
Rigger's socket box
$020240 T$
Printer for hard copy
printout of all recorded
information
0386000

DESIGNER-CREATED EFFECTS

Fully programmable effects are a special feature of Gemini. Six effect types available for producing up to 99 separate effects. Using the special keypad and the VDU for setting up, effects may be linked to the start of a fade and all parameters of the event can be programmed, including the type of effect, starting and stoppirig, and the memories and channels which take part in each step of the effect.

INDEPENDENT BACK-UP
Ready for use beneath the removable cover on the console is the separatelypowered integral electronic back-up system. Ten presets of eight groups of dimmers can be programmed with the auxiliary keypad, or transferred from Gemini's output

GALAXY 3 THEATRE

he international standard for professional lighting control, now offering such unique features as Dimmer Fault Detection feedback and completely integrated control of automated fixtures.

- 999 dimming control channels plus an additional 99 for automated lights
- Control of up to 1536 dimmers
- Completely modular for custom configuration
- Up to 20 preset masters with LED displays, flash, boost and inhibit capability - Motion Control module for position and colour control

Features	GALAXY 3	LIGHT PALETTE 3	IMPACT	GEMINI 2	LIGHTBOARD M,LBM/Jr.
No. of Channels	- 999	- 800	- 350	- 280	96 or 144 addressable channels
No. of Dimmers	11536	- 1536	0768	- 384	- 768
No. of Memories	- 200 average	- 200 average	- 400 average	- 200 average	- 200 or 140
Electronic Patch	- Full proportional				
No. of Playbacks	- 8 wheels max. (theatre) 4 faders max. (studio)	- 2 to 6 operator selectable	2 timed I split manual	2 split crossfaders timed or manual	2 crossfaders, I timed I timed or manual
No. of Submasters	20 preset masters with inhibit flash \& overrange	- 9 to 13 operator selectable	20 pile-on overlapping, 4 inhibitive, all with flash and exclude from record	- 8 with inhibit and flash	24 or 48 ple-on with selectable flashbuttons
Special Effects	99 effects 256 steps - Level and speed override	\qquad	Cue looping and 100 Set Up cues	99 effects 256 steps Level and speed over-ride	- Up to 200 effects 84 steps 2 playbacks Rate over-ride
VDU's	Up to 4 discrete high resolution colour	- 2 discrete colour	- I high resolution colour	- I high resolution colour	- I colour
Library Storage	- Dual $31 / 2^{\prime \prime}$ discs	- $31 / 2^{\prime \prime} \mathrm{disc}$	- $3^{1 / 2 / 2}$ disc	- $31 / 2^{\prime \prime}$ disc	- $31 /{ }^{\prime \prime}$ disc
Back-up	Programmable memory back-up or dual electronics	Lightboard M or dual electronics	Dimmers to faders patch or full tracking	- Dimmer to faders patch	- Channels to fader patch Full tracking option
Options	Printer Stalls control - Rigger's control - Remate monitors	- Printer - Remote desk - Hand-held control - Remote monitors	Printer Hand-held controt	- Printer - Stalls control - Hand-held control, wired or infra-red	- Printer Hand-held control Remote activation of up to 8 pre-programmed commands
Additional Features	Alpha keypad Pan, tilt focus module internal clock Dimmer fault reporting Leam profile Channel format Profle Auto mod Record track	- Alpha keypad - Profile - Channel format - Bankloading of submasters - User selectable default fade time	- Selectable default fade time Expansion to 700 channe's Multiview for on-line preview User diagnostics	- Bankloading submasters - Memory list display - Local channel and memory displays	8 function keys Memory list display Remote submasters

- Dimmer Fault Detection system for local reporting of dimmer status including No Load, Short Circuit and No Output
- Fully proportional patch
- Improved high resolution video displays
- Improved special effects - Completely redesigned electronics for greater speed and data integrity

GALAXY 3 STUDIO

T- he only major lighting control system designed specifically for television production. Studio Galaxy provides all the features of Galaxy 3 Theatre plus:

- Dedicated television playback panel with two Studio stores

Individual record functions for Preset, Studio and total output

- Two output masters for separate control of active and preset states.

Accessories

Designer's Control, available for hard-wired or infra-red operation. Provides channel access, memory recording and playback facilities. Supplied with a set of connectors, battery charger. and 13 amp socket

0255002
Infra-red Receiver, for use with Designer's Control

0255203
Rigger's Control - a rugged hand-held controller for channel access during focusing. Supplied with a set of connectors, battery charger and 13 amp socket

0254005
Rigger's socket box
02020 4T
Stalls or Studio Control selected control modules may be housed in a portable desk for access to level setting and memory recording during rehearsals.
Printer - provides hard copy printout of all recorded information. Now date and time stamped.
Geographic Button Mimic a custom panel matching the circuit layout of the stage. Each button illuminates when the circuit is active and flashes while under control.

M24/M24FX	ACTION 24/48	TEMPUS 2G	ACT DESKS
- 24 to 120	- 24 or 48	$12,18,24,36 \text { in } 2$ scenes	12, 18, 24 in 2 scenes
24 to 120	24 or 48	- 12 to 36	- 6 to 24
-199	099	-	-
	-		-
O split timed or manual	I split crossfader with fade time controller	I split crossfader	- I split crossfader with fade time controller
8 group faders		4 group faders	
8 faders	9 effects 48 steps sound to light rate control		-
- \| black and white		-	-
- Cassette	-	-	-
- FX module	- 24 or 48 faders	-	-
-	-	-	
- Multiplex output - Local displays	- Multiplex output - Memory number and display - Manual master - Flash buttons with flash to full or solo		-

LIGHT PALETTE 3

1 po
ew features for this popular American control console include: - 800 channels with proportional patch to 1536 dimmers

- 9 or 13 submasters, userselectable
- User definable default fade times
- High resolution colour VDU's
- Full tracking backing Dual $31 / 2^{\prime \prime}$ disc drives

Accessories

- Stalls control

Printer

ACT 2 DIMMER PACKS

Alow-priced lighting system with dimmers and control faders integrated in one compact unit.

2 dimmers in a single package.

- Dims up to four 650 W loads or two I200W loads.
- Requires mains supply of
only 13 amps.
- Simple installation.

ACT 3 AND ACT 6
DIMMER PACKS
conomical portable dimmers in a rugged rack mounting case.

- Six IOA or three 25A dimmers in a rugged, economical package.

- Choice of anaiogue or multiplex input
- Local fader control for performance or rigging.
- Easily convertible for rack mounting.
- Fuse continuity indicators
- Thermal over-temperature fuse protection.
- Designed for RCCB protected mains supplies.
- Meets BS 800 and VDE 0875 RFI standards.
- Fully rated for continuous operation.
- Wide choice of output socket types.
- Compatible with all Strand control products.

ANALOGUE
 CONTROL

DIMMER PACKS

ACT 6 I5A

6×10 A dimmer pack for $220 / 240 \mathrm{~V}$ single phase and neutral plus earth supply, with a single I5A socket for each dimmer output, and a six lever local control with disable switch and socket for Act or Tempus desk

0404209

ACT6 16A CEEI7

$6 \times 10 \mathrm{~A}$ dimmer pack for $220 / 240 \mathrm{~V}$ three phase (or single phase), neutral and earth supply, with one CEEI7 16A socket outlet for each dimmer output, and a six lever local control with disable switch and socket for Act or Tempus desk

0404450

ACT 3 25A

3×25 A dimmer pack for $220 / 240 \mathrm{~V} 3$ phase, neutral and earth supply. Strapping bar provided for conversion to single phase operation. CEEI7 32A socket outlet provided for each dimmer output, protective circuit breakers, a six lever local control with disable switch and socket for a Tempus desk, and a control output socket to connect to a slave ACT 3. 0403 I 34
ACT 3 25A MULTIPLEX
3×25 A dimmer pack for $220 / 240 \mathrm{~V} 3$ phase, neutral and earth supply. Strapping bar provided for conversion to single phase operation CEE 17 32A socket outlet provided for each dimmer output, protective circuit breakers and a local switch and a control output socket to connect to a slave ACT 3.

0403136

ACT 3 25A SLAVE

3×25 A dimmer pack for $220 / 240 \mathrm{~V} 3$ phase, neutral and earth supply. Strapping bar provided for conversion to single phase
operation. CEE I7 32A
socket outlet provided for each dimmer output, protective circuit breakers and a 3 way control link cable to connect the Slave to a Multiplex or Analogue ACT 3.

0403138

ACT 6 SCHUKO

$6 \times 10 \mathrm{~A}$ dimmer pack for $220 / 240 \mathrm{~V}$ three phase, neutral and earth supply, with a single Schuko socket for each dimmer output, and a six lever local control with disable switch and socket for Act or Tempus desk

04044 0T

MULTIPLEX CONTROL DIMMER PACKS

ACT 6 I5A MULTIPLEX
$6 \times 10 \mathrm{~A}$ dimmer pack for $220 / 240 \mathrm{~V}$ single phase and neutral plus earth supply, with local switch and master fader controt, multiplex input/output connectors and channel selector switch, and a single 15 A socket for each dimmer output 0404505

ACT 6 I6A CEEI7 MULTIPLEX
6×10 A dimmer pack for $220 / 240 \mathrm{~V}$ three phase (or single phase), neutral and earth supply, with local switch and master fader control. multiplex input/output connectors and channe selector switch, and a single 16A CEEI 7 socket for each dimmer output 0404750

ACT 6 SCHUKO

 MULTIPLEX6×10 A dimmer pack for $220 / 240 \mathrm{~V}$ three phase, and neutral plus earth supply, with local switch and master fader control, multiplex input/output connectors and channel selector switch, and a single Schuko socket for each dimmer output 0404706

ACT 6 MULTIPLEX CONVERSION KIT
(To adapt analogue packs)
04032 II

Accessories

For standard analogue control of packs refer to the Act and Tempus range of manual fader desks. For multiplex control, see Action, M24, M24FX, Lightboard M, Gemini or Galaxy memory controls

MULTIPLEX INTERFACE UNITS

A
ange of interface units which convert the multiplex output of Action, M24, M24FX Lightboard M, Gemini Impact and Galaxy memory control systems into conventional analogue signals.

ACTION

 DEMULTIPLEXERDesigned specifically for the Action consoles, this new economy demultiplexer permits control of 24 analogue dimmers. A second box can be connected for control of a total of 48 dimmers. The Action demultiplexer is designed to produce the Strand standard. - IOV control voltage, but the unit can be converted to produce $+5,+10,+12,-5$ or -12 volt. Each demultiplex box is provided with mains and 0.5 metre daisy chain data cables.

Action demultiplexer, 24 dimmers 0460100

F\&D MULTIPLEX

 INTERFACES24 channel Fader \& Dimmer interface unit for use with systems in which a manual control desk is included and/or dimmers which have a non-standard control input. voltage are used.

24 channel F\&D interface to connect to Tempus dimmer racks and control desks

0371009
24 channel F\&D interface with Tempus type connectors, but adapted for systems with -15 V control voltage

0371400

24 channel F\&D interface with D type connectors for dimmers and control with - 10 V control voltage. D type connectors and control cables are not included

0371104
24 channel F\&D interface with D type connectors for dimmers and control with +10 V control voltage. D type connectors and control cables are not included

0371305
24 channel F\&D interface with D type connectors for dimmers and controls with -15 V control voltage
D type connectors and control cables are not included

0371500

PERMUS

DEMULTIPLEX UNIT
24 channel chassis-mounted interface unit for installation using multiplexed controls and Permus dimmers.
Although the unit is designed to mount inside a Permus dimmer rack, it is also suitable for other dimmers using the Strand standard - 10 V control voltage. A kit of parts comprises demultiplex interface, mains supply cable, dimmer control cables and instruction leaflet.

24 channel Permus
Demultiplex Kit 0602000

TEMPUS DIMMER PACKS

ugged, portable dimmer packs in 10,20 and 25A ratings.

TEMPUS 10A/15

6×10 A dimmer pack for $220 / 240 \mathrm{~V}$ single phase and neutral plus earth supply, with shrouded-contact fusing and twin, shuttered I5A 3-pin sockets for each dimmer output

0411505

TEMPUS IOA/C

$6 \times 10 \mathrm{~A}$ dimmer pack for $220 / 240 \mathrm{~V}$ three phase and neutral plus earth supply, with Neozed fusing and twin
hinged-lid Schuko sockets for
each dimmer output
0411600

TEMPUS IOA/I6

6×10 A dimmer pack for $220 / 240 \mathrm{~V}$ single phase and neutral plus earth supply, with shrouded-contact fusing and twin 16A 2 pole + ECEEI7 sockets for each dimmer
output
0411700

TEMPUS 20A

$3 \times 20 \mathrm{~A}$ dimmer pack for 240 V single phase and neutral plus earth supply, with shrouded-contact fusing and 32A 2 pole + ECEE 17
socket for each dimmer
output
042150 T

TEMPUS 25A/C

3×25 A dimmer pack for $220 / 380 \mathrm{~V}$ three phase and neutral plus earth supply, with Neozed fusing and 32A
2 pole + ECEE 17 socket for each dimmer output

0422507

Accessories

Pair of wall mounting brackets for any Tempus dimmer pack

0437106
Cord patch to join "hard' load wiring to 12 flexible cables, each cable combed through angled panel and fitted with 15 Amp 3 -pin plugtop

0479823
Cord patch as above, but
5 Amp 3-pin plugtop
0479831
One way control plug box, containing I metre cable terminating in an 8 -pin plug. wired to terminals

0437501
Two way control plug box, otherwise as above

0437502
Three way control box otherwise as above

0437503

PERMUS DIMMER RACKS
 range of professional dimmer racks in 10 A and 25 A sizes. Now provided with MCB's as standard.

- Meet BS800 and VDE 0875 RFI suppression standards.
-45A dimmers available to special order.

PLUG-IN
PROFESSIONAL
DIMMER RACKS

- No rear access required. - I0A, 25A and 45A modules available.
- Linear power law specification LP type.
- High specification CS type for closed loop operation, square law response.
- Analogue or multiplexed input.

10A and 25A MCB protected.

Permus Dimmer Racks with MCB's

24×25 A Rack	0602425
$24 \times 10 A$ Rack	0602410
$12 \times 25 A$ Rack	0601225
$12 \times 10 A$ Rack	0601210
$6 \times 25 A$ Rack	0600625

For Multiplex control input versions of the above, add suffix/MUX to each code number.

lug-in dimmer modules offering a variety of options and specifications.

LP SPECIFICATION ANALOGUECONTROL

$48 \times 10 \mathrm{~A}$	0065030
$24 \times 10 \mathrm{~A}$	0065031
$24 \times 25 \mathrm{~A}$	0065032
$12 \times 25 \mathrm{~A}$	$\mathbf{0 0 6 5 0 3 3}$

CS SPECIFICATION ANALOGUECONTROL

$48 \times 10 \mathrm{~A}$	0066030
$24 \times 10 \mathrm{~A}$	0066031
$24 \times 25 \mathrm{~A}$	0066032
$12 \times 25 \mathrm{~A}$	0066033

$6 \times 45 \mathrm{~A}$
To special order only.
For Multiplex control input versions of the above, add suffix/MUX to each code number.

LIGHTING

 FLEXIBILITY THROUGHOUT THE DAYScene setting with
Microdimmers

A bright and welcoming hotel breakfast with uplighting to complement the early morning sun.

- Another Preset creates the scene for a business lunch.

- And a choice of evening settings. A restful ambience for a relaxed meal.

- Or a subtle candlelit effect. for a romantic atmosphere.

SECTION 2

ARCHITECTURAL LIGHTING
CONTROLS AND DIMMERS

SCENES FOR BUSINESS AND LEISURE

- Hotels
- Restaurants
- Conference Centres
- Showrooms
- Galleries and Museums - Shops
- Schools and Colleges
- Clubs and Pubs
- Offices
- Theatres and Cinemas
- Churches
- Residential
- Airports
- Hospitals

AT WORK OR LEISURE

 MICRODIMMER SETS THE SCENE

Inn any environment, well designed lighting with effective control makes an important contribution to efficiency and comfort. The possibilities available from a fixed lighting scheme can be extended to a surprising degree by including Microdimmer for control.
Microdimmer offers flexibility without fuss today's solution for digital lighting control.

From informal business discussions to a slide presentation or at a formal meeting, Microdimmer preset levels are quick to respond to the flexibility and variety of working needs,

MICRODIMMER

Note：Control Stations supplied complete with white foce plate．Alternative face plates（only） are available as Accessories，either in dark anodized or brass finish．

ENVIRON 2

Note：All measurements are in millimetres and werghts are in kilogrammes．

ARCHITECTURAL LIGHTING
SECTION 2
CONTROLS AND DIMMERS

UNI	IMMERS	DIMENSIONS				RATING		Cat No．
	－icroprocessor based unit dimmers which can	$\begin{gathered} H \\ 216 \end{gathered}$	$\begin{aligned} & W \\ & 112 \end{aligned}$	$\begin{aligned} & D \\ & 77 \end{aligned}$	Wt 1.75	5A	Universal	0950205
	operate alone or with Remote	216	112	92	1.85	10 A	Universal	0950310
	Control Stations．A sophisticated inbuilt memory records preset	216	170	97	2.30	20A	Universal	0950420

CONTROLSTATIONS FOR USE WITH ENVIRON2 PRUSUTDIMM								Cat No．
［	1－Gang Preset Outstation（4 Pushbutton）							0941003
	2－Gang Preset Outstation（8 Pushbutton）							0942000
㽛	3－Gang Preset Outstation（12 Pushbutton）							0943008
\square	6－Gang Preset Outstation（24 Pushbuston）							09460 OT
B	I－Gang UP／STOP／DOWN Outstation（3 Pushbutton）							0988002
里	2－Gang UP／STOP／DOWN Outstation（6 Pushbutton）							0988108
－	2－Gang UP／STOP／DOWN Outtation（9 Pushbutton）							0988203
MANUAL DIMMERS		DIMENSIONS				RATING	TYPE	Cat No．
odular plug－in manual dimmers which can be configured into a dimming system comprising a mixture of tungsten or fluorescent loads．		$\begin{gathered} \mathrm{H} \\ 270 \end{gathered}$	$\begin{aligned} & W \\ & 135 \end{aligned}$	D 210	$\begin{gathered} W t \\ 3.5 \end{gathered}$	$6 \mathrm{~A}(1.5 \mathrm{~kW})$	Tungsten（N－P）	0980004
		270	135	210	4.0	$16 \mathrm{~A}(4 \mathrm{~kW})$	Tungsten（N－P）	0981001
		270	135	210	5.5	32 A （ 7.5 kW ）	Tungsten（ $\mathrm{N}-\mathrm{P}$ ）	0982009
		270	135	210	3.5	6A	Fluorescent（N－P）	0983006
		270	135	210	4.0	16 A	Flurerescent（N－P）	0984003
		270	135	210	5.5	32A	Fluorescent（N－P）	0985000

CONIROLSTATIONS FOR USE WITH ENVRON 2 MANUV D DIMMER
 Cat No．

	CatNo．	（1）－Gang Rotary
（1）1－Gang Slider Fader	0911018	［8 2－Gang Rotary
（1i）2－Gang Slider Fader	0912015	（i）3－Gang Rotary
（罒 3－Gang Slider Fader	0913012	1．Take Control（Fader plus Take Push）
［174ill 6－Gang Slider Fader	0916014	［p Photo Cell（including mounting bracket）
［17．7114 6－Gang Slider Fader with Master	0916006	3 Amplifier and Setting Panel（for Photocell）

0901005
0902002
09030 OT
0910002
0920007

ENVIRON 2 ACCESSORIES	Cat No．
Strand Rail（Mounting Plate I metre）：Wall fixing for Dimmer Modules	$\mathbf{0 9 8 7 4 0 7}$
Mains Connection Box：Mains input for Multi－Dimmer installation	$\mathbf{0 9 8 7 2 0 6}$
Busbar Connecting Set：Links between Moctules and to Mains Box	$\mathbf{0 9 8 7 1 0 0}$
Multi－Phase linking kit：Links Earth and Neutral in 3 Phase installations	$\mathbf{0 9 8 7 3 0 1}$

SECTION 2

ECONOMY AND MINI UNIVERSAL DIMMERS

ECONOMY DIMMERS	DIMENSIONS				RATING	TYPE	Cat No．
ost－effective dimmers supplied with local	$\begin{gathered} \mathrm{H} \\ 370 \end{gathered}$	$\begin{gathered} w \\ 260 \end{gathered}$		$\begin{aligned} & W_{t} \\ & 4.75 \end{aligned}$	Dual 6A	Tungsten	0975006
rotary control．Can be used	370	260	105	4.75	16A（4kW）	Tungsten	0975101
with optional remote outstations including	370	260	105	4.75	16 A	Fluorescent	0975207
MINI UNIVERSAL．DIMMERS		IMEN	ION		RATING	TYPE	Cat No．
C ompact unit dimmers provided with an				W_{t}			
ONOFF switch and a local	155	155	53	1.4	5A	Universal	0975005
rotary control，or for use with optional manual remote outstations．							
CONTROL STATIONS FOR USE WI	TH E	ONO	Y An	D MII	UNIVERSA	MMERS	Cat No．
－1－Gang Rotary Outstation							0901005
（ 2－Gang Rotary Outration							0902002
（i）3－Gang Rotary Outstation							090300 T
（1）I－Gang Slider Fader Outstation							0911018
（i）2－Gang Slider Fader Outstation							0912015
粈 3－Gang Slider Fader Outtation							0913012
戦 6－Gang Slider Fader Outstation							0916014
［．Take Control Outstation（Fader plus	Take P						0910002
With I6A versions of Economy dimmers，UP／	STOPI	DOWN	contro	ers ma	also be used．		
［ I－Gang UP／STOP／DOWN							0988002
图 2－Gang UP／STOP／DOWN							0988108
］3－Gang UP／STOP／DOWN							0988203

FLUORESCENT DIMMING BALLASTS

Fluorescent lamps con only be dimmed when controlied through suitoble dimming ballosts． Usually，fuurescent luminaires need to be converted for dimming by employing a circuit compatible for the type of tube used and matched to on approppriate dimmer module． For further infornation consult the Strand Guide to Fluorescent Dimming．

Note：All measurements are in millimetres and weights are in kiogrommes

PROGRAMMABLE LIGHTING CONTROL SYSTEMS

	8 Preset Pushbutton Station
，	Fader Station
	E
＋	，

－ach programmable system is configured with suitable dimmers（either plug－in modules or Dimmer Racks）to specific requirements．

AUTOMATED LIGHTING SYSTEMS

New developments in technology can create opportunities for further improving entertainment lighting. Recent advances in the fields of robotics and microprocessor control have enabled Strand to lead the way in developing a new generation of automated lighting, characterised by quiet, accurate operation and memorisation of position. First came the Showchanger range, designed for rapid fire movement and the demands of live music, now followed by PALS, designed for absolute precision and repeatability.

View from the lighting control room through to the studio.

PALS -
PRECISION
AUTOMATED
LIGHTING SYSTEMS
PALS system can bring new economies and creative possibilities to all kinds of productions. Most professional luminaires in the Strand and Quartzcolor ranges can now be supplied as motorised units. Motor drive assemblies, processor board and drive electronics are safely and compactly housed in a rectangular section steel yoke. (See page 20 for availability of systems.)

This new television studio in Honnover has probably the world's most sophisticated outomated lighting focility. A studio floor control ponel allows both lighting levels and positions to be adjusted to a high degree of precision.

SECTION 3

PALS TECHNICAL FEATURES

PALS MOTORISED LUMINAIRES

Motorised Professional luminaires in the Strand and Quartzcolor ranges are equipped with:

COLOUR CHANGERS

Selected luminaires can be provided with rapid, quiet scroll-type colour changers.

DISTRIBUTION SYSTEM

Each PALS system requires a simple distribution system to provide power and data to the luminaires.

AUTOMATED LIGHTING SYSTEMS THE PAL SYSTEM

PALS - the Precision Automated Lighting System offers just what its name implies: high resolution and repeatability of positioning. The light will return precisely to its recorded position with an accuracy of $\pm 1 / 3^{\circ}$, as instructed by either the PC Controller or Galaxy 3.

- Rigid steel yoke to house motor drive assemblies and electronics.
(1) 16 bit on-board microprocessor.

10 colours plus clear

- Two versions available:

Dependent - for use with automated yokes.
Independent - with on-board electronics for use without automated yokes.

3-way and 10 -way power supplies for providing 24V DC to motors.
40-way data distribution box to amplify and protect the control signal.
All data transmitted over high speed digital communications protocol.
Each colour change provided with 10 colour gel string

T
here is a choice of two control systems for Strand Precision Automated Luminaires.

Up to 99 channels of control, each with 12 functions.

- Electronic patching for motion and dimming channel assignment.
- Position control provided by four high resolution wheels.
- VDU display of all aspects of luminaire positioning.
- Dedicated keypad for luminaire call-up and position or colour setting

Available functions include pan, tilt, focus, iris and colour.

- Low voltage DC servo motors.

Clutch protection to prevent damage when moved manually.

GALAXY 3 MOTAON

 CONTROL PANELThe new Galaxy 3 console offers integrated recording and playback of dimming and motion cues when fitted with specialised electronics and motion control panel.

PC CONTROLLER

Custom application software and interface card with an IBM PS/2 Model 30 personal computer are provided by Strand as a compact, efficient control system for PALS luminaires.

99 channels, each controlling four functions.
20 megabyte hard disc for cue storage.
Library storage provided by $31 / 2^{\prime \prime}$ diskette.
Dedicated keyboard for luminaire positioning and cue recording.
On-line help for immediate access to command instructions.

LED windows for immediate unit and positional reference.

- Blind plotting or modification.

Local recording of motion cues.

- User-selectable home positions for each luminaire.

PALS FUNCTION AVAILABILITY

Luminaire/Function	Pan \& Tilt	Focus	Iris	Lampswitch	$8 "$ colour scroller	$10^{\prime \prime}$ colour scroller
Cantata F \& PC						
Cantata Profiles I I/26, $18 / 32,26 / 44$						
Cadenza F \& PC						
Cadenza Profiles 9/I5, I2/22, 19/32						
Punchlite						
Pollux						
Castor						
Bambino 5kW						
Arturo I.25/2.5kW,2.5/5kW						
Beamlite						

THE ELEMENTS OF A PALS SYSTEM

PALS motorised luminairesColour changers3A
Power supply boxData distribution boxPC controllerGalaxy 3 motion control panel

PC Controller and VDU

[^1]

SHOWCHANGERS FOR SPECIAL EFFECTS

Showchangers make possible many dramatic special effects through remotely-controlled high speed movement and colour changes. The special motorised spotlights are controlled by a Taskmaster control system for 'stand alone' operation, or for incorporation into a Lightboard M console.

PARSCAN II IO00W

R${ }^{\text {ecenty redesigred }}$ for greater accuracy, speed and quieter operation, the new
Parscan II offers many new features.

Motorised Par 64 spotlight with integrated colour
changer provided with six colour starter gel string.

7605415
360° rotation.
220° tilt

- Modular electronics for ease of replacement and repair.
Variable speed settings.
- Increased speed, decreased noise.
- Conforms to all European safety regulations.
- Integrated 16 frame scroll-type colour changer - Circuit breaker protected.

TASKMASTER

Control system for the new Parscan II designed to operate alone or to be incorporated into a Lightboard M console.

- 99 channels.
- 250 memories.

32 groups.

- 12 programmable chase routines.
- $31 / 2^{\prime \prime}$ disc drive for library storage.
- LED windows for display of luminaire and memory numbers.
- Track ball position control with single axis lockout.
- Hold function for channels or groups.

Accessories

Power Supply Unit
24V DC power supply for
use with Parscan II, capable of driving up to six Parscans.

7605575

Buffer Box

Required for installations with more than 6 Parscans.
Provides the electronic isolation circuits required to maintain signal data over large Showchanger rigs.

7605561

Splitter Box

Enables up to seven data cables to be paralleled together (I input to 6 output) to provide a 'star' type of connection system

7605552

Cables

Standard multicore data
cables which transmit multiplexed data, low voltage power from the controls to each Parscan.

3 metre cable	7635510
8 metre cable	7635511
15 metre cable	7635512
30 metre cable	7635513
Tape Specialised high industrial tapes for assembling colou	mperature strings.
White tape	7605520
Black tape	7605521
Silver tape	7605522

High temperature
clear tape
7605523

Taskmaster memory control system for Showchangers, complete with disc drive, 2 metres of mains cable and 8 metres of data cable.

7605642
Taskmaster control module for addition to Lightboard M - use appropriate Lightboard M catalogue number with TM suffix.

Whatever the scale of a production - amateur or professional - lighting like other design processes is based on a sequence of logical decisions plus a good measure of creative inspiration. This brief guide offers a sequence of step-by-step decisions to form the basis of a lighting process for the smaller scale production. It has been prepared by a lighting designer with experience of working on productions of all types and sizes. Strand hope that it will be especially helpful to amateur groups, small touring companies and educational theatre.

PLANNING

ead Script at least twice (first for overall 'feel' and then for detail) concentrating on text rather than the stage directions which the director may well ignore - especially those in an 'acting edition'. If a musical, listen to the music until absorbed.
iscuss with the director.
choreographer, set and costume designers, how the script will be staged and the contribution to be made by the lighting, Will light select acting areas? And/or will it establish shifts in atmosphere? Are there any particularly special effects?

ecide Style of the

 'lighting look'. Will it be softly diffuse or have stabbing beams? How directional? How selective? How atmospheric? Will the colours be subtle tints? Or more strongly romantic hues? Or more saturated contrasty statements? Or a penetrating white? How naturalistic?
stablish Priorities

 for the allocation of resources. There is rarely enough equipment or time to meet all the requirements of our ideals. How vital is that two minute special effect? Enough to justify removal of two lights from two hours of general use?
ivide Stage by

 Areas for independent selection determined by the production's requirements (at actor eye level which does not correspond to the area of lit floor). Musicals may have symmetrical areas of uniform size but drama areas are rarely symmetrical in size, shape or distribution.
ivide Stage by

Colours if colour is to be a variable. Which areas in a drama need both warm and cool toning? Can some be neutral? In a musical where do we need more saturated 'reds' and 'blues' (and 'ambers'?) in addition to face 'neutrals'.
etermine Essential Specials where the light beam's size or shape is 50 critical that one of the generally set area lights will not suffice. Also determine essential special effects. Double check priorities.

hoose Lighting

Positions to give the best available angles for lighting the chosen areas in the chosen colour ranges. And position the specials and the effects.

a. llocate Lighting Instruments starting

 with the ideal type for each position, then reallocating to make the best use of equipment actually available.
elect Colours by

converting general 'warm', 'cool', 'reddish',
'bluish', 'amber', 'hot', 'fruity' etc into specific colour filter numbers.

IN THE THEATRE

ig as plan, paying particular attention to mechanical safety. Fit barndoors, masks, gobos, colours etc. Flash-out, checking plan numbers correspond to dimmerboard numbers.
ocus each light to predetermined position on stage, checking actor lights by moving around all positions which are intended to be lit by a particular spotlight Check for required beam edge quality - normally soft and, as far as possible, 'lost' on set.

Plot each cue state by selecting appropriate lights and balancing their intensities on the dimmers to give the required lighting pictures. Use a 'body' to walk the actor positions and do not hurry the writing down of the levels.
ehearse any difficult cues before the dress rehearsals. After these rehearsals, some rebalancing and refocusing is almost inevitable.
onduct Post Mortem with the rest of the production team to compare hopes with reality, so that next time
omplete Paperwork including lighting layout plan; equipment, colour and cable lists: cue synopsis.

ommunicate Intentions to

 electrics crew, stage manager, scene designer and director by giving them photocopies of lighting plan and cue synopsis. Point out to them anything vital that they might otherwise overlook.
heck Intentions by

comparing the observed action at rehearsal during each cue state with the planned areas, colours, specials as noted in the cue synopsis.

repare Equipment

 by checking all adjustments for free movement and positive locking. Clean and flash-out all spotlights. Don't forget accessories. Visual check of all cables for insulation breaks and loose clamping at plugs and sockets.
erform with

maximum
concentration. If anything goes wrong, correct very very slowly and smoothly. If nervous actors head for black spots, try to help them - but slowly and smoothly.

बet-out carefully after the final performance. Put away all equipment as you would hope to find it next time.

THE CONTRIBUTION OF LIGHTING

STAGE LIGHTING
A GUIDE TO LIGHTING THE SMALLER SCALE PRODUCTION

Abstract

he overriding priority just has to be visibility. Having decided what we want the audience to see, we must ensure that they see clearly and without strain - if in any doubt, up half a point in brightness! But this can be a selective visibility concentrating the audience attention on chosen parts of the stage action. The lighting can contribute to the atmosphere of a scene. In a naturalistic play this can mean a light quality that conveys the season of the year, the time of the day and the state of the weather. Or it can be emotional messages from colour tonings of cool sadness to warm happiness. Or perhaps the menace of contrasts between light and shade.

Light should always enhance the look of a production, helping to reveal the form, colour and texture of all components of the stage picture whether scenic elements or actors.
And Lighting's contribution can be totally fluid - particularly in terms of selectivity and atmosphere - whether by sudden dramatic contrasts or subtle subconscious shifts of emphasis.

LIGHTING THE ACTOR

erhaps the most fundamental problem in lighting an actor is that the most selective light (and the one throwing minimum shadow behind the actor) is the one that shines vertically down. Yet this does not reach the actor's eyes and teeth (Fig 1).
To enable the actor's face to be seen, light must come from a position to the front of the actor (Fig 2).
So when considering the size and shape of stage areas to be lit, it is important to remember that we are referring to light at the actor's face level - and that this does not normally correspond with the lit area of stage floor.

Thus an actor may stand within a pool of light on the stage floor yet his face will miss the light (Fig 3).
Or indeed the actor may stand outside that pool of light while his face is fully lit (Fig 4).
So we must think in section, as well as in plan!

Fig 3
Fig 4
colours, especially in a musical, that do not give a sufficiently contrasty palette ... placing too much faith in logic and realism rather than theatricality ... focusing with beam edges that are too hard and therefore too noticeable ... being too ambitious for the time available to rig, focus, plot and rehearse.

DIVIDING
THE STAGE DIVIDING BY AREA
nce decisions have been made about the kind of contribution that we expect lighting to make to the production that we are planning - and these contributions have been put into some sort of order of priority - we need to break down the stage area into the segments over which we require independent selective control. The required breakdown may be symmetrical, in which case the stage plan will be divided into something that resembles a series of areas of different sizes corresponding to the placing of the action. Of course it could well be that there is no need for division into what it is useful to call production areas: all the stage may be in use all the time In this case a simple division into centre and sides will allow balancing for maximum 'enhancement' of the look of the scene.
Note: Adjaining areas overlop - both side to side and bock to front. And remember to remember that these are areas where an actor's head is to be lit - they are unlikely to be the same as the light patterns on the floor.
f

AREA PLANNING FOR A PLAY

In this naturalistic play - possibly but not necessarily in a box set - the areas are determined to a considerable extent by the positions of furniture and doors. And the lighting is expected to make some logic in terms of practical light fittings (table lamps, wall brackets, etc) and the natural sunshine and moonshine coming through windows (including those in the audience's 'fourth wall'). In this particular example, we have play where it is desirable to focus attention at various times on the sofa, the armchair, the table (with that essential tool of modern drama, a telephone) and the doors. These doors are tremendously important in any drama: some of the key appearances and speeches are made there. But for a long intimate scene on the sofa, it is useful to concentrate on that sofa and loose peripheral areas like the doors. Consider the seven areas shown here in terms of possible combinations: the area polette gives the director a wide range of selectivity of audience vision whether a subconscious fluidity (slow cues that are not obvious) or an area selection obviously linked to the switching of the practical lamps.

DIVIDING BY COLOUR

oes our chosen lighting style for the production include a fluid use of colour? After establishing a breakdown of the stage into areas, the next step is to consider whether any areas need to have controllable variations in colour. Or whether some of the adjoining areas could be grouped together for more general variations from a less selective colour wash.
Note: When working on plans it is useful to define the selected oreas and indicate basic colour range by initials such os W, C, N for warm, cool and neutral: or possibly R, O, Y, G, B, A for red, oronge, yellow, green, blue amber in the case of o musical. (To help simplify our plans here, the neutral lights have been caded N. Actual colour filter selection is best postponed until ofter the position and type of light has been decided).

COLOUR PLANNING FOR A PLAY
In a naturalistic play, colour is often used to create a fluid atmosphere that can shift from warm cheerfulness to cool sadness. If an area is lit with some lights in warm tones and some in cools, the dimmers of the control board can be used to achieve a whole series of options from an extreme of the warm colour alone through the neutrality of both together, to the other extreme of cool colour alone. Which (if any) of the areas need to have this kind of 'double cover' of colour tones? In this example, discussion with the director has established that such a colour polette seems necessary around the central areas and the desk, whereas the upstage corners and downstage right can manage on a warm tint only - although perhaps one that is a little closer to a compromise neutral than the warms in the mixable areas. In such a naturalistic production the actual colour tints chosen are likely to be quite subtle.

SPECIALS

he major proportion of a stage lighting rig is focused to form a palette of areas and colours whose various combinations will provide the desired fluidity of selectivity and atmosphere. However, there are certain lights whose function is so 'special' that they cannot make a significant contribution when mixing the basic palette.

FOR THE ACTOR

Specials usually consist of spotlights set so tightly that the spaces they light cannot be considered as areas. They are often for moments when an actor has to be picked out (perhaps only head and shoulders) on an otherwise blacked-out stage. They need to be listed in a priority order for close scrutiny and reduction to essentials.

FOR SPECIAL EFFECTS

There may be a request for equipment to produce clouds flames, water, lightning, etc. When listing it is always prudent to remember that such effects can draw attention away from the actor rather than positively support a performance. And if the effect is essential, then the effect of light reflected from fire or water is often more telling than a pictorial representation of the actual fire or water.

AREA PLANNING FOR A MUSICAL

Musicals tend to have many scenes and many selective and atmospheric light changes within these scenes. Therefore, unless there are many - very many - lights available, the breakdown into areas has to be very general In this example the breakdown is symmetrical because, as in 50 many musical productions, the settings consist of a symmetrical series of wings leading to a backcloth, possibly a skycloth With the addition of cloths and scenic pieces, the method of staging gives a flexible masked acting area with the possiblily of sufficient open space for dancing and lots of entrances for a large chorus to get on and off quickly. In most musicals the big moments are staged in the downstage areas: to help both musical balance and the 'putting across' of numbers to the audience. For the same reasons, much of the essential action takes place centre stage. The most common selective lighting cue is to 'concentrate centre', usually downstage centre, by 'losing the edges'. This suggests a minimum of three areas across the stage - certainly at the front of the stage, and probably also midstage However, it is often quite practical to consider the whole width of the rear of the stage as one area. This provides a seven area combination that offers an oreo polette giving the director considerable selectivity with the possibility of progressive tightening from back to front and from sides to mididle.

COLOUR PLANNING FOR A MUSICAL

The dialogue scenes of a musical require the subtle colour tones that are appropriate for a naturalistic play. However, the musical numbers, particularly when solo singers can be given isolating visibility from tightly ocused follow spots, usually call for strongly atmospheric colouring. And many dance sequences, where the body is relatively more expressive than the face, respond well to positive use of quite strong colour. This example shows a much used technique where the colour is applied in ather broader washes than the areas selected for scene location. The front half of the stage is divided into three areas, each lit from above in ather saturated colours: a hot and cold rather than a warm and cool The rear half is treated as one area, also with a hot and cold from above From the side comes further washes, probably in slightly less saturated hues. These may divide the stage into bands: in this case an upstage band and a downstage band, possibly splitting the stage into left and right but ust as likely covering the full width. With relatively neutral colour from the front, saturated colours from above and intermediate colours from the side, we have a colour polette that offers considerable scope.

FOR THE SCENERY

The proportion of the rig focused on the scenery will be very small. With the exception of skys and back or front cloths, scenery normally gets sufficient general wash from the reflected light bouncing off the stage floor from the lights that have been set for the actors. Indeed, as discussed in the following pages, many of the basic problems of lighting desigr arise from difficulties in stopping actor light hitting directly on the scenery. Successful lighting of scenery depends on augmenting the diffuse reflected general light by selective highlighting of chosen scenic elements, or parts of these elements. This can vary from bold gashes to soft emphasis. Again, to be listed and reduced to essentials after a debate based on priorities and available resources.

SECTION 4

CHOOSING LIGHTING POSITIONS

LIGHTING FROM THE FRONT

onsider the effect of a light starting as a vertical downlight on an actor, then moving in a frontal plane until its beam becomes horizontal and then carries on to light from below. How visible will be the actor's face, particularly eyes and teeth? To what extent will face and body be modelled or flattened? What area of stage will be selected and what will be the size and direction of shadows cast on floor and scenery?

LIGHTING FROM THE BACK AND SIDE

ow consider a light from behind. Then a light or lights from a series of side angles (ie lights at right angles to those considered above). Once again the criteria is visibility, modelling, selectivity and shadows.

FINDING THE COMPROMISE

e normally seek to light an actor for maximum visibility and maximum modelling, with minimum shadow. Additionally, in many productions, we need to select as tight an area as possible. Which combination of angles offers the optimum compromise?

A vertical beam is the most selective light possible. The lit area of stage, and the shadow cast upon it, need be no wider than the widest part of the actor. However, the actor's eyes will be black pools and a highlighted nose will shade the mouth.

A light source behind the actor does not illuminate the face, but it helps to give depth to the stage by separating the action from the scenery through creating a haze and highlighting head and shoulders. The shadow of the actor is cast forward, helping the selection of areas. Since the light does not fall on the face, strong colours can be used.

The basic compromise that has long been the standard approach is a pair of beams crossing on to the actor (one for each side of the face) from positions which are both forward and to the side of the actor. The suggested angle is often around 45 degrees in both directions - ie midway between vertical and horizontal; and midway between front and side. However, to restrict the shadows cast and to give a better 'join', the lights are often positioned closer to the vertical and to the centre.

If the light comes from a little forward of the actor, it will start to reach the eyes and mouth (provided that she keeps her chin up and is not defeated by a hat brim!). However, the lit area, and shadow cast, starts to extend upstage from the actor - ie the light is slightly less selective.

If the light comes from a little to one side of the actor, it will start to reach the eyes and mouth on that side. The area lit, and the shadows cast, will extend along the stage floor on the other side.

A backlight added to the basic crossed pair brings depth to the scene and generally enhances the 'look' of the actor. The backlight can be used for strong atmospheric colour if required, while the crossed pair maintain a more natural tint on the actor's skin tones. Note: The actor is now lit by three beams with a 120° separation between them.

FOR STANDS SEE PAGES $82 \& 83$

As the lighting comes increasingly from the front, the actor's eyes and teeth receive more light. But the area lit extends further and further upstage, reducing the selectivity and increasing the likelihood of the actor's shadow hitting the scenery.

Add a second light source from the other side, and both sides of the face will receive light. However, there is now a second shadow, and the selected area of stage floor extends to both sides of the actor:

The problem with 'crossed pair' lighting (with or without a backlight) is the extent of the spread of light on floor and scenery beyond the area where the actor's head is lit (remember that head is usually about five feet above the floor). Although a single beam can be flat, it can also be quite tight.

As the light becomes more and more frontal, the actor's features become flattened (and so also does threedimensional scenery). The lit area and the actor shadows increase until, when the light is horizontal, there is a lit corridor for the entire depth of the stage, and the actor shadows become actor length.

As the side lighting comes from an increasingly lower angle, the shadows will lengthen to both sides of the actor and a larger corridor will be selected across the stage. As the light hits the face from a lower angle, it will light more into the eyes and teeth, although there will still be a tendency towards a central dark line where the beams meet down the centre of the face.

This flatness can be enhanced quite considerably by adding a backlight - and the selectivity is still a tightly controlled upstage/downstage corridor without side spillage.

Light from below projects an actor shadow that looms above the actor, rising and falling as she moves towards and away from the light source. When this is the only lighting angle, the effect on the face is not at all natural. But a little from below, usually just reflected light, can help to soften the harshness of light from above.

As the angle lowers, side light has an increasingly modelling effect on the actor's face and body. This is particularly important in dance. When the light becomes horizontal there will be a lighting corridor across the whole stage. By focusing just clear of the floor, it is possible to lose shadows into the wings, and the light will only be apparent when an actor stands in it.

For modelling, side lights can be added and, although they will spread the lit area, they can be at quite steep angles since they do not need to make a major
contribution to visibility. Note: The actor is now lit by
four beams with a 90° separation between them.

THE DECISION PROCESS

o how does one decide where to put the spotlights? On many stages and in many auditoria there is not much choice: but, to make the best use of the positions available, it is necessary to start from an ideal and compromise that ideal to fit reality. By WHERE we mean where to put the light and where to point it. Traditional advice involves a lot of crossing of light beams - partly to help model/sculpture the actor by introducing a partially sidelight angle and partly because lighting diagonally across a stage provides a bigger spread of light from each lamp: an important bonus when equipment is in short supply. But crossing the beams opens out the area lit and can cast excessive shadows on side wall or masking. And so, with spotlights becoming increasingly versatile as to beam width, there is every reason to consider using the traditionally discredited method of lighting the actor with light coming straight in from the front. Of course if this is the only light. yes it will be flat. (And if the available positions are so low that an actor shadow will be thrown on to the sky, then better to come diagonally priorities again!) But with the addition of some backlight (even if it is nearly vertical) and some side light, the frontlit actors will come alive and the areas/ shadows brought more under control. There need not be precise side lighting for every area: it can often be quite general since it is frequently more important in the big wide areas than in smaller tighter areas (more important, that is, in priority terms!).
In the examples shown here, the traditional crossing method has been used for the play, while the actors in the musical are lit 'flat frontal'. But it could be vice versa. Whichever way, the next stage in the planning is to establish where the lights go and where they point.

TYPES OF LIGHT

aving chosen where the lighting instruments are to be placed, how do we choose which type to use in each position? Choice is complicated by lighting equipment being so robust that, in addition to the range in today's catalogue, many earlier models are still in use. However, lighting instruments group into families and it is convenient to consider our requirements in terms of what each family offers in terms of beam size, beam shape, and beam quality.

EXAMPLE PLAN FOR A PLAY

EXAMPLE PLAN FOR 'IN THE

 ROUND'

EXAMPLE PLAN FOR A MUSICAL

For each area of our play we need two lights: one for each side of the actors' faces. When an area requires a full colour control of cool and warm, the number will double to four spots - a crossed pair in warm and a pair in cool. A spot bar immediately behind the proscenium arch will give a suitable angle for lighting the upstage areas, but for the downstage areas a position in the auditorium is necessary. Red and blue have been used to indicate warm and cool filters in the spots. Green indicates more neutral washes which have been added from back and sides. Not enough equipment? Well, do we really need all these areas? And so many of them with both warm and cool? (Back to priorities?) Or rather than a pair, we could use a single straight in - but if so, we must make it really straight in because a single crossing bean does not do much for the other side of the face!

For staging in the round, light needs to come from all sides. And it should be evenly balanced to avoid favouring one segment of audience to an extent that is not really permissible in a staging form so democratic as theatre-in-the-round. To avoid hitting into audience eyes, light has to come from both within the acting area and from outside it. Angles can be closer to the vertical than in other forms of staging because the audience is closer to the actors and thus visibility is "easier

In this musical the actors' visibility light is provided by spots in a neutral colour hitting straight in. The front areas are covered from the auditorium, the midstage areas from a bar just inside the proscenium, and the upstage areas from a midstage bar. If the stage is very wide, two or more lamps may be required for each area as indicated. Strong colour comes from near vertical backlights and medium colour from the wings (on stands, booms or ladder-frames to be discussed under 'rigging').

Note: For clarity, these plans only include actor lights. The play would require light outside the window and on the door bockings, while the musical is likely to need a colour mix for the bockcloth and possibly specials for elements of scenery.

FLOODS

The bearn size, shape and quality emitted by a flood is fixed: there are no adjusting knobs. The light is therefore suitable for lighting skys and cloths. It is not selective enough for lighting actors. Coda units may be single or grouped in 3 s or 4 s for colour mixing: they have a reflector which is specially designed to ensure an even wash over a large area from a short throw.

SOFT SPOTS

Prism Convex (PC) spots allow control of the beam size, and the beam may be roughly shaped by a rotatable barndoor: The quality is even and soft-edged, with less lightspill outside the main beam
than in the case of a fresnel. Fresnels have a very soft edge. The beam angle is adjustable and its shape roughly containable by a 4-leaf rotatable barndoor. The extent of the spill outside the main beam makes them unsuitable for longer throws, particularly from the auditorium.

PROFILE SPOTS

Profile spots give precise control of the beam. Shapes in all sizes can be produced by an iris diaphragm (for round edges) and shutters (for hard edges). For more complex shapes, special masks can be cut. Edge quality can be adjusted from very soft to very hard by moving the lens,
while the quality of the whole beam can be textured by a metal pattern plate called a gobo. The number in the profile's name indicates the beam angle.
Whereas standard profile spots have a fixed beam angle which is narrowed by shuttering, variable beam profiles use a pair of lenses whose differential movement gives a wide range of beam angles and edge qualities. The shutters are then only required for shaping. Adjustments are faster and more efficient use is made of the lamp's output. The number in a variable profile's name indicates the range of available angles.

BEAMLIGHTS

Most lighting instruments produce a conical beam so that the spread widens as the throw increases. Beamlights use a parabolic reflector (and no lens) to produce a near parallel beam which is more intense than a lens spotlight of the same wattage. One of the most important developments of the past decade. The optics are within the glass envelope of the lamp. Various angles of a squashed near-parallel beam are available. The intensity produces a depth-enhancing haze in the air. So intense that effective with deep colours. The basis of all rock lighting.

DECIDING

WHICH LIGHTS TO USE

Deciding which instruments to use obviously depends to a large extent on what is available - meaning another exercise in listing priorities. For 'foh' (front of house) throws of any distance in the auditorium, profiles are essential, both to avoid undesirable lighting up of the auditorium from scatter light, and to allow sufficiently precise control of the beam to prevent spillage on to the proscenium.
However, in a small hall there is a lot of merit in considering fresnels or PCs (well barndoored) at close range when a lot of spread is possible from a few lamps. For onstage use, fresnels and PCs come into their own with fast-toset soft edges - profiles are the most versatile instruments but they inevitably take longer to focus. For backlight, fresnels and beamlights are favourite, while floods are to be thought of only for wide expanses of scenery. (Use for actor light only in situations of extreme desperation). For theatre-in-the-round, barndoored fresnels give the required smoothness and spread. Existing installations in most theatres and halls are likely to be based on fresnels and profiles: anyone buying new equipment should look seriously at including a goodly proportion of the new generation PCs giving smooth soft-edge beams without stray scatter light. And at the versatility of the variable beam profiles.

Fresnels have been allocated everywhere because they have a good smooth spread (profile edges can be very difficult in small theatres in the round). Every spot must have a barndoor to contain spill from the audience eyes. Each become a pair of spots since this is the only way that it is possible to light fully to the sides of the acting area. Too many-spots? Then perhaps just one cover in a neutral shade (thereby halving the number on the plan) and utilising a couple of pairs of straight downlighters to add colour toning in warm or cool.
This plan shows instruments being allocated to our play in a very orthodox way: profiles for the front-of-house and fresnels for onstage. If a couple of PC_{5} were available, they would be a useful alternative on the ends of the stage spot bar: this is a position where any scatter light shows up badly on the side walls of the set. Whether 500 or 1000 W units are required will depend mainly on length of throw, perhaps with the changeover around 6 to 8 metres. However, it is important always to remember that the actual level of light intensity is not so important as the BALANCE.

The actor face lights are profiles from the front and fresnels onstage, with the second bar being less powerful units - face light is rarely important upstage in a musical. The backlights are fresnels, although parcans would be nice if available. For the sidelighting, profiles have been used downstage to contain the light in a tight corridor across the front - often advisable when frontcloths or running tabs are in use. Midstage sidelighting is fresnels for a good spread, while the optional upstage sidelight is again profiles to keep the light clear of the skycloth

WHICH BEAM ANGLE

To find the required beam angle, the simplest way is to draw at a suitable scale like $1 / 2^{\prime \prime}$ or $14^{\prime \prime}$ to the foot (25 or 50 to 1 if you are metricated) the throw and required spread distances, then measure the angle with a protractor:

29
015603171

SECTION 4

STAGE LIGHTING
A GUIDE TO LIGHTING THE SMALLER SCALE PRODUCTION

THE RIG PLAN

HE PLAN is the kernel of any lighting design. It shows, at minimum:

- The POSITION of each light.
- The TYPE of light in each position.
- Any ACCESSORIES, such as barndoors or gobo, required by any particular light.
The DIMMER which will control each light.

The plan should be drawn to scale ($1 / 2^{\prime \prime}$ to |' or $1: 25$). This helps accurate indication of light positions. And if scale symbols are used for these lights, there is a check on space problems: if it can be drawn on the plan, there will be room for it on the stage. Any shapes may be used to indicate lights, but plans are more easily read if the symbol resembles the outline shape of the light. Either way, the plan should certainly include a key showing the type of lighting instrument represented by each symbol.
Colour and dimmer are indicated by number: the usual convention is to write the colour number inside the symbol and the dimmer number alongside the symbol.
Lights fixed to horizontal bars are easy to show in plan: the bar can be drawn in the position that it will occupy over the stage and its height indicated by a note (such as $+14^{\prime}$) written at the end of the bar. Lights fixed to vertical bars, or stacked on a series of brackets, are more difficult to draw - they must be indicated diagrammatically. Foh lights in the auditorium are usually drawn much closer to the stage than their scaled real distance which would make the plan inconveniently large. The easiest method is to work on tracing paper over a graund plan of the scenery and stage.

A good procedure is:
(1) Establish all lighting positions with \mathbf{X}_{s}
(2) Convert these \mathbf{X} s to symbols of available (and/or acquirable) lighting instrument types, drawing them pointing in the approximate direction of proposed light travel.
(3) Write colour numbers inside symbols.
(4) Add dimmer numbers alongside symbols.
(5) Trace through key features of the set and stage - it is usually possible to trace through (in spaces clear of lighting drawing) enough to relate the positions of lights to the geography of the setting and stage.
This will bring the plan to a point where it can be used to prepare and rig the equipment. The lighting designer's own copy will grow many extra markings to indicate precisely where the lights are to be pointed - markings so detailed that they would only confuse if included on all copies of the plan.

LISTS

From the plan, lists are prepared of the required number of:

TYPES OF LIGHT

LENGTHS OF CABLE
ACCESSORIES
COLOUR FILTERS

SECTION DRAWINGS

ill there be borders to mask the lights (and other things) hanging above the stage? If so, draw a section to check that all the light beams will be able to reach all desired parts of the actors and the scenery. Usually (but not always) the heights of the borders and lighting bars can be adjusted. Only a section will determine what these relative heights should be, and only a section will determine how effective the masking arrangements will be for an audience eye in the front row.

FOCUSING

Focusing is probably the most important part of the whole lighting operation. Not even the most sophisticated marvel of a microprocessor control desk can fill in that dark spot where the lights have not been properly overlapped. Nor can a hard edge be softened or a disturbing spill on to a border be shuttered off. Focusing involves tricky ladder work so that there is every incentive to get it right first time although, inevitably, it will be necessary to get at the odd spotlight between rehearsals for a little fine adjustment.

FOCUSING IN COMFORT

If you stand with your back to the light that you are focusing, (1) You will avoid being blinded (2) You will be able to see what the actor's light is doing to the scenery.

No clear shadow of head, therefore head is not lit.

Clear shadow of head, therefore head is lit.

If the lighting designer is shorter than the actor, make an allowance - check by raising hand.

WHAT CAN WE ADJUST?

ON ALL LIGHTS

Left/Right \& Up/Down

ON SOFT SPOTS

Bigger/Smaller

+ with optional Barndoor
Rough shaping (\& control of spill)

ON PROFILE SPOTS

Round size by optional Iris Shaped size by Shutters Texture by optional Gobo Beam edge quality by Lens

+ on Variable Beam Profile Spots
Size and edge quality by differential movement of two Lenses Shape by Shutters
The most difficult types of light are the basic Profile Spots since there is an interaction between shutters (or iris) and lens movement. Although adjusting the lens is principally a means of making the edge of the beam harder or softer, it will also change the size. Therefore it is usually necessary to adjust shutters and lens alternately to get the desired combination of size and edge quality.
Most profiles have an adjustment whereby the light can be adjusted so that it is either smooth across the whole spread of the beam, or 'peaked' to be brighter in the middle with the amount of light falling off towards the edge. For most purposes it is easier to light with an even brightness across the beam and so it is recommended that anyone beginning to work with light should use an even beam until through experience they discover a need for a 'peaky' beam.

VARIABLE ANGLE PROFILE SPOT

SOFT SPOT

FIXED ANGLE PROFILE SPOT

THE CONTROL BOARD

$B$$y$ means of the 'board', the lighting designer can control:
the composition of the stage picture - by selecting the appropriate combinations of individual lights.
the balance of this picture - by selecting the level of brightness of each of these lights.

- the fluidity by which one picture is replaced by another:

What was once called a switchboard, or more properly a dimmerboard, is now formally called a Lighting Control. Which is fine so long as we take care to remember that our 'Lighting Control' only controls which lights we use and how bright they are. 'Lighting Controls' do not control where we put the lights, which lights we put there and where we point them. Most of us however still talk about our lighting control as 'the board' whether we use our knees, our fingers or a microprocessor to work it.

DIMMING AND DISTRIBUTION

Modern boards are two-part:
the desks whose controls we push, slide or turn to produce the desired changes in the intensity of the lights and

- the dimmers which interpret the instructions from the controls so that the appropriate amount of electricity is passed to each light.
Fortunately the connection between desk and dimmers is slender cabling; from a maximum of one 8-core cable for each group of six dimmers in portable manual systems to a minimum of the single twin-core screened cable that can transmit all the required data between a memory system and its dimmers. This allows the desk to be positioned wherever it is convenient for the operator to have a good view of the stage. The dimmers can then be placed in their most convenient position to distribute 'controlled' electricity from the mains supply to the individual lights. This is normally a backstage position which is within the manufacturer's recommended extremes of temperature and:
- adjacent to a suitable mains supply switch-fuse
- clear of actor and scenery movements.
- accessible for fuse changes.

For permanent installations of any size, the dimmers are normally mounted in racks with permanent wiring to numbered sockets suitably located around the stage and auditorium. For temporary installations (and some of the smaller fixed ones) portable dimmer packs are used, each pack having six dimmers with a pair of output sockets to each dimmer. Temporary cables can then be run from those socket outlets to the lights. It is essential that such an arrangement is kept tidy, with plugs clearly labelled and tape used to harness together cables which are proceeding in the same direction. Even the smallest stage lighting installation uses what is, by domestic standards, a lot of electricity. The function of dimmers (secondary to their artistic function) as a power distribution system must not be underestimated. Safety and efficiency go hand-in-hand.

Tempus Dimmer Rock

Permus Dimmer Rock

PRESETTING

The operation of today's boards is based on presetting. The intensity levels of the lights which compose the next picture are preset in preparation for the change. On manual systems the levels are filed as written numbers on a paper plot from which the individual dimmer levers can be set by hand at each performance. On memory systems, the data is filed in an electronic store from which it can be recalled instantly by fingering a simple control. On Cue, the change is effected by operating masters which replace the existing lighting state with the new one. Operation of these masters is so simple that the board operator can devote total attention to the timing of the change.

MANUAL PRESETTING

While manual presetting boards offer facilities undreamed of in the not-so-far-distant days of simple directly-operated resistance dimmers, their operation still requires a lot of work that is both time-consuming and error-prone. Although presetting allows cues to be performed smoothly and with accurate sensitive timing, the individual dimmer levels for each cue must still be written down at rehearsal - and re-set from the written plot for each cue at each performance. However, the rapid development of micro-processing techniques is bringing instant electronic memorising of plots within the financial resources of smaller and smaller installations. In particular, the M24 extension of the Tempus range means that memory is no longer just a dream for many of those who light the amateur stage. This is not the place to go into the details of operation. Suffice it to say that once a cue state has been established by a rapid selection and balancing of lights via a keyboard of familiar pocket calculator format (or by standard preset levers if you prefer), the levels can be instantly filed. and just as instantly recalled . . . and just as instantly adjusted if necessary. The time-wasting drudgery is renioved but that essence of any live performance, the timing of a cue's progress, is completely under the operator's control.

M24 Control Desk

Abridged from 'Lighting the Amateur Stage' parts I \& 2 by

 Francis Reid, published by Strand Lighting.${ }^{0}$ Strand Lighting Limited/Francis Reid.
Francis Reid is also author of 'The Stage Lighting Handbook', 'The Staging Handbook', 'Theatre Administration' and 'Designing for the Theatre'. For further reading also see 'Stage Lighting' by Richard Pilbrow and 'The Art of Stage Lighting' by Frederick Bentham.

STRAND THEATRE LIGHTING

The most comprehensive range of luminaires available for the professional and amateur stage.
Throughout the world of entertainment, Strand is the first name for excellence in stage lighting equipment, offering the largest range available. It extends from compact and economical lights perfect for small budget productions, amateur and touring companies, and community centres, to high performance luminaires of many types for versatile lighting and effects in the largest theatres and opera houses.
Every product incorporates Strand's unique knowledge of stage lighting requirements and extensive manufacturing expertise in this field.

The scene of Giulietta's studio in Venice during 'Aspects of Love' at the Prince of Wales Theatre, London WI. There are 40 scene changes throughout the show. The lighting effects are made possible by using Strand's Precision Automated Lighting System.

Brimsham Green School, Yate, Wiltshire. Stage Lighting, manual lighting control and dimmer packs, and retractable seating by Strand.

The Royal Shakespeare
Company's Swan Theatre ot Stratford upon Avon is Strand equipped from the luminaires to the dimmers and the Galaxy Memory Lighting System.

STAGE LUMINAIRE STENCIL

7 his useful aid to drawing rig plans comes in scales of $1: 25$ and $1: 50$. It is made of flexible plastic and is complete with a PVC storage pocket. 8836101

SECTION 4

MINIM 500/300W

 SPOTLIGHTS

MINIM 23 500/300W PROFLLE 223100 T 3.85 kg $\sqrt{7}$ ith all four shutters withdrawn, it projects a 28° circular beam, or even wider with supplementary lens. The beam is adjusted by a recessed knob that moves the internal lens.

Supplied with 500W, 240 V RSE/ 18 lamp (220 V may be specified), heat resisting fibre colour frame and 1.5 metres of fitted power cable (open ends).

\varnothing = Diameter
For full photometric information refer to data sheet.

Accessories for Minim Spotlights
38° Wide angle lens in mount extends beam spread to 38° (for Minim 23) 278004 T

Iris diaphragm, 12 leaf
(for Minim 23)
2336317

Four-door rotatable barndoor with safety spring, and $125 \mathrm{~mm}^{2}$ heat resisting fibre colour frame (for Minim F\&PC)

2320004
Additional $125 \mathrm{~mm}^{2}$ heat resisting fibre colour frame

27806 0T
${ }^{5} \mathrm{~b}^{\prime \prime}(16 \mathrm{~mm})$ female, stand mounting socket

Minim F with $500 \mathrm{~W}, 240 \mathrm{~V}$ RSE 18 lamp (220 V may be specified), heat resisting fibre colour frame and 1.5 metres of fitted power cable (open ends).

2686501
Universal mounting bracket for both wall and ceiling

mounting	$\mathbf{2 6 8 6 6 0 7}$
Hook clamp	$\mathbf{2 6 4 8 3 0 7}$
Safety chain	$\mathbf{2 6 0 6 4 1 8}$

Performānce guide based on RSE/I 8500 W lamp

	$4 m$		$6 m$		$8 m$		$10 m$	
	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
N	1575	0.88	700	1.32	400	1.76	250	220
W	375	4.16	175	6.24	100	8.32	75	10.40

$N=$ Narrowest $W=$ Widest $\quad \varnothing=$ Diameter For full photometric information refer to data sheet.

Scale 1:15

$-1+$

Lamps

RSE I 8500 W
240 V lamp $\quad \mathbf{3 4 2 1 8 1 2}$
220 V lamp
3421820
Note: For details of other lamps which may be used in Minim spotlights, refer to Section 6 .

Minim PC
Performance guide based on RSE/I 8500 W lamp

	4 m		6 m		8 m		10 m	
	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
N	2950	0.49	1325	0.73	750	0.98	475	1.22
W	375	3.5	175	5.25	100	7.0	75	8.75

$N=$ Narrowest $W=$ Widest $\quad \varnothing=$ Diameter
For full photometric information refer to data sheet.

Scale 1:15

MINIM PC
500/300W PRISM
CONVEX
22315072.25 kg

- rovides a circular beam with a tight, diffused
edge, variable from an intense pin-spot at 7° to a wide angle flood at 47°.

Minim Prism Convex spotlights are supplied carton packed in pairs. Each carton contains 2 spotlights, each

MINIM F

 500/300W FRESNEL 22300102.25 kg2. he soft-edged circular spot at 12.5° to 55° at flood.

Minim Fresnel spotlights are supplied carton packed in pairs. Each carton contains 2 spotlights, each with 500 W , 240 V RSE/ 8 lamp (220 V may be specified), heat resisting fibre colour frame and 1.5 metres of fitted power cable (open ends).

PRELUDE 650/500W SPOTLIGHTS

PRELUDE PC 650/500W

PRISM CONVEX
22502023.6 kg
ridges the different edge qualities of the Fresnel and Profile spots, and provides a variable-spread beam of 7.5° to 55° with diffused edges.
Supplied with 650W, 240 V RSE/26 lamp (220 V may be specified), colour frame and 1.5 metres of detachable power cable fitted with 15 amp plug. (European Schuko or open end alternatives may be specified)

Prelude 16/30 Performance guide based on RSE/26650W lamp, set at peaky field

	$4 m$		$8 m$		$12 m$		16 m	
	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
N	3375	1.12	850	2.24	375	3.36	225	4.48
W	1675	2.3	425	4.6	200	6.9	125	9.2

$N=$ Narrowest $W=$ Widest $\quad \varnothing=$ Diameter
For full photometric information refer to data sheet.

Prelude 28/40 Performance guide based on RSE/26650W lamp, set at peaky field

	4 m		8 m		12 m		16 m	
	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
N	2300	2.0	575	4.0	275	6.0	150	8.0
W	1600	2.9	400	5.8	200	8.7	100	11.6

PRELUDE F

650/500W FRESNEL
$2250001{ }^{3.5 \mathrm{~kg}}$
F or a circular soft-edged beam variable from a tight spot of 9° to a medium angle flood of 40°
Supplied with $650 \mathrm{~W}, 240 \mathrm{~V}$ RSE/26 lamp (220 V may be specified), colour frame and 1.5 metres of detachable power cable fitted with 15 amp plug. (European Schuko or open end alternatives may be specified)

Prelude F Performance guide based on RSE/26 650W lamp

4 m	8 m		12 m		16 m			
	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
N	3500	0.63	875	1.26	400	1.89	225	2.52
W	750	2.9	200	5.8	100	8.7	50	11.6

$N=$ Narrowest $W=$ Widest $\quad \varnothing=$ Diameter
For full photometric information refer to data sheet
Scale 1:15
tamps which mof aternative Prelude spotights, refer to Section 6.

Alternative Power

Cables
1.5 metre spotlight power cable fitted with UK 15 amp 3 pin plug

3500222
1.5 metre spotlight power cable fitted with European Schuko plug

3500221
1.5 metre spotlight power
cable with bare ends.
3500220

Prelude PC Performance guide based on RSE 26650 W lamp

4 m	8 m		12 m		16 m			
	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
N	3425	0.52	875	1.04	400	1.56	225	2.08
W	450	4.16	125	8.32	50	12.48	-	-

$N=$ Narrowest $W=$ Widest $\quad \varnothing=$ Diameter For full photometric information refer to data sheet.
lamps which may be used in

Accessories for
Prelude Spotlight

2722808

23201 OT

Lamps

RSE/26 650W
240 V lamp
3423100
220V lamp $\quad \mathbf{3 4 2 3 1 1 9}$
Note: For details of alternative

CANTATA I200W SPOTLIGHTS

STAGE LIGHTING SPOTLIGHTS

CANTATA II/26 1200W PROFILE

2261126 12.8kg
narrow to medium angle variable spread spotight, with a beam spread of 11° to 26°
Supplied with $1200 \mathrm{~W}, 240 \mathrm{~V}$ RSE/29 lamp (220V may be specified), colour frame, integral wire mesh guard and 1.5 metres of detachable power cable fitted with 15 amp plug. (European Schuko or open end alternatives may be specified)

CANTATA FOLLOWSPOT I200W

2251126 13.5kg

valuable addition to the immensely successful Cantata range. This followspot is ideally suited for use in clubs, schools, small theatres, etc. It is based on the Cantata 1|/26 and comes complete with black-out iris, 29 mm spigot for stand mounting. specially adapted tiltmechanism for smooth movement, and sights; in addition to all the other normal Cantata features. A new 4 -colour magazine is available as an accessory.

CANTATA 18/32 I200W PROFILE
2261832 l 2.0 kg
his unit offers a spread of medium range beam options between 18° and 32° Supplied with $1200 \mathrm{~W}, 240 \mathrm{~V}$ RSE/29 lamp (220 V may be specified), colour frame, integral wire mesh guard and 1.5 metres of detachable power cable fitted with 15 amp plug. (European Schuko or open end alternatives may be specified)

CANTATA 26/44
I200W PROFILE
I200W PROFILE
2262644 lkg

- eam options from 26° to a wide 44° are provided by this medium to wide angle profile spot. Supplied with $1200 \mathrm{~W}, 240 \mathrm{~V}$ RSE/29 lamp (220 V may be specified), colour frame, integral wire mesh guard and 1.5 metres of detachable power cable fitted with 15 amp plug. (European Schuko or open end alternatives may be specified)

CANTATAF
1200W FRESNEL
22628005.8 kg

- his compact spotlight has a soft edge beam variable from a tight spot of 7.5° to a wide angle flood of 50°.
Supplied with $1200 \mathrm{~W}, 240 \mathrm{~V}$
RSE/29 lamp (220 V may be
specified), colour frame,
integral wire mesh guard and 1.5 metres of detachable power cable fitted with 15 amp plug. (European Schuko or open end alternatives may be specified)

CANTATA PC
 I200W PRISM

CONVEX
22628027.2 kg
roviding tighter lighting than the fresnel, the PC's diffused beam is variable from a narrow 4.2° spot to a wide angle flood of 49°. Supplied with $1200 \mathrm{~W}, 240 \mathrm{~V}$ RSE/29 lamp (220 V may be specified), colour frame, integral wire mesh guard and 1.5 metres of detachable power cable fitted with 15 amp plug. (European Schuko or open end alternatives may be specified)

Cantata PC
Performance guide based on RSE/29 1200 W lamp

	5 m		10 m		15 m		20 m	
	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
N	8250	0.35	2075	0.7	925	1.05	525	1.4
W	575	4.6	150	9.2	75	13.8	50	18.4

$N=$ Narrowest $\quad W=$ Widest $\quad \varnothing=$ Diameter For full photometric information refer to data sheet.

Accessories for Cantata Spotlights Four leaf rotatable barndoor (for F\&PC)

2321600
I8 Leaf Iris
diaphragm
(for Profiles)
2360200

Pattern/gobo holder (for Profiles)

2386600

Additional $185 \mathrm{~mm}^{2}$ Colour Frame

2726204

Hook clamp	$\mathbf{2 6 4 8 3 0 7}$
Safety chain	$\mathbf{2 6 0 6 4 1 8}$

Lamps

RSE 29/1200W
240V lamp $\quad 3422122$
220 V lamp $\quad \mathbf{3 4 2 2 1 2 1}$
Note: RSE/19 and RSE170.
1000 W lamps are also approved for use in Contata.
Note: For details of these and other alternative lomps, refer to Section 6.

Alternative Power
 Cables

1.5 metre spotlight power cable fitted with UK 15 amp 3 pin plug

3500222
1.5 metre spotlight power cable fitted with European Schuko plug $\quad \mathbf{3 5 0 0 2 2 1}$
1.5 metre spotlight power
$N=$ Narrowest $\quad W=$ Widest $\quad \varnothing=$ Diameter
For full photometric information refer to data sheet
cable with bare ends

3500220

SECTION 4

CADENZA 2000W SPOTLIGHTS

STAGE LIGHTING
SPOTLIGHTS

Supplied with $2000 \mathrm{~W}, 240 \mathrm{~V}$ RSE/79 lamp (220 V may be specified), colour frame, integral wire mesh lens guard, integral 18 -leaf Iris diaphragm and 1.5 metres of detachable power cable fitted with 15 amp plug. (European Schuko or open end alternatives may be specified).

Supplied with $2000 \mathrm{~W}, 240$ V RSE/ 79 lamp (220 V may be specified), colour frame, integral wire mesh lens guard, integral 18-leaf Iris diaphragm and 1.5 metres of detachable power cable fitted with 15 amp plug. (European Schuko or open end alternatives may be specified).

CADENZA 9/I5
2000W PROFILE
2242100
ariable narrow angle spot, 9° to 15°, with plenty of punch for really long throws.

CADENZA 12/22

 2000W PROFILE224200122.8 kg
arrow to medium angle variable spread spot 12° to 22°. Ideal for long throws from the auditorium lighting bridge.

Cadenza 12/22
Performance guide based on RSE/79 2000W lamp, set at peaky field

8 m	16 m		24 m		32 m			
	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
N	6750	1.7	1675	3.4	750	5.1	425	6.8
W	2825	3.1	725	6.2	325	9.3	175	12.4

$N=$ Narrowest $\quad W=$ Widest $\quad \varnothing=$ Diameter For full photometric information refer to data sheet.

Cadenza 9/15
Performance guide based on RSE/79 2000W lamp, set at peaky field

8 m	16 m		24 m		32 m			
	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
N	8850	1.26	2225	2.52	1000	3.78	575	5.04
W	3875	2.1	975	4.2	450	6.3	250	8.4

$N=$ Narrowest $\quad W=$ Widest $\quad \varnothing=$ Diameter
For full photometric information refer to data sheet.

Alternative Power

Cables

1.5 metre spotlight cable fitted
with UK 15 amp 3 pin plug
3500222
1.5 metre spotlight power
cable fitted with European
Schuko plug $\quad \mathbf{3 5 0 0 2 2}$
1.5 metre spotight power cable with bare ends

3500220
Note: For detailed information on lomps refer to Section 6.

CADENZA 19/32
 2000W PROFILE

224240322.2 kg

M edium to wide angle variable spot 19° to 32°, useful for many stage lighting jobs.
Supplied with $2000 \mathrm{~W}, 240 \mathrm{~V}$
RSE/79 lamp (220 V may be specified), colour frame, integral wire mesh lens guard and 1.5 metres of detachable power cable fitted with 15 amp plug. (European Schuko or open end alternatives may be specified).

Cadenza 19/32
Performance guide based on RSE/79 2000W lamp,
set at peaky field

$8 m$	$16 m$		$24 m$		$32 m$			
	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
N	3375	27	850	5.4	375	8.1	225	10.8
W	1250	4.6	325	9.2	150	13.8	100	18.4

$N=$ Narrowest $\quad W=$ Widest $\quad \varnothing=$ Diameter
For full photometric information refer to data sheet.

CADENZA F 2000W FRESNEL

2252207 12.2kg
4. powerful spot with soft, indeterminate edges and a wide range of beam angles 7° to 62°.
Supplied with $2000 \mathrm{~W}, 240 \mathrm{~V}$ RSE/79 lamp (220 V may be specified), colour frame, integral wire mesh lens guard and I. 5 metres of detachable power cable fitted with 15 mp plug. (European Schuko or open end alternatives may be specified).

Cadenza F
Performance guide based on RSE/79 2000W lamp

	8 m		16 m		24 m		32 m	
	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
N	5475	1.0	1375	2.0	625	3.0	350	4.0
W	450	9.6	125	19.2	50	28.8	25	38.4

$\mathrm{N}=$ Narrowest $\mathrm{W}=$ Widest $\quad \varnothing=$ Diameter
For full photometric information refer to data sheet.
Scale 1:15

CADENZA PC
 2000W

PRISM CONVEX
2252408 15.2kg
iffused edge widelyvariable beam 4° to 61°, for tighter lighting than the fresnel.
Supplied with $2000 \mathrm{~W}, 240 \mathrm{~V}$ RSE/79 lamp (220 V may be specified), colour frame, integral wire mesh lens guard and 1.5 metres of detachable power cable fitted with 15 amp plug. (European Schuko or open end alternatives may be specified).

Cadenza PC
Performance guide based on RSE/79 2000W lamp

	$8 m$		$16 m$		$24 m$		32 m	
	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
N	8925	0.6	2250	1.2	1000	1.8	575	2.4
W	375	9.4	100	18.8	50	28.2	25	37.6

$N=$ Narrowest $W=$ Widest $\quad \varnothing=$ Diameter
For full photometric information refer to data sheet

Scale I:15

CADENZA EP 2000W EFFECTS

PROJECTOR
2252410 14.5kg
he Cadenza Effects Projector provides the lighting designer with the means of projecting stationary or moving effects onto the acting area or backing of his/her choice, with the flexibility to project standard effects or custom made slides. Supplied with $2000 \mathrm{~W}, 240 \mathrm{~V}$ RSE 79 lamp (220 V may be specified), 150 mm diameter 3-lens condenser system and glass heat filter, and
1.5 metres of detachable power cable fitted with 15 amp plug.
(European Schuko or open end alternatives may be specified).

Note: The majority of projected moving effects require an effects spot, a moving effects attachment, and an objective lens. Scene projection requires a slide carrier and a turntable front instead of on effects attachment.

SOLO
 FOLLOW SPOTS

These robust luminaires feature a variable spread lens system giving beam angles from 9° to 15°. Peaky/flat field adjustment, controlled by a rotary knob at the rear of the housing, maintains excellent beam qualities at all settings. Front and rear sights are provided for aligning the beam before opening the iris or shutter.

SOLO 2K 2000W

 FOLLOW SPOT 225250030.5 kg , colour magazine 3.0 kgSupplied with built-in iris diaphragm, colour frame, horizontal strip shutters, 3 metres of power cable with in-line switch, fork with T.V. spigot, adjustable balance for stand mounting. 2000 W 240V RSE/79 lamp included.

SOLO CSI/CID

 1000W
FOLLOW SPOT

225260042.5 kg ballast 18.5 kg ,
colour magazine 3.0 kg
Supplied with automatic EHT starter unit $(220 / 240 \mathrm{~V} 50 \mathrm{~Hz}$ input) and external ballast with 3 position switch for stand-by, half and full power. 5 metres of power cable and 2 metres of cable to ballast. Built-in iris diaphragm, colour frame, horizontal strip shutters, fork with TV spigot, adjustable balance for stand mounting. CSI or CID lamp included (specify type required).
Solo 2K
Performance guide based on RSE/79 2000W lamp. set at peaky field

	8 m		16 m		24 m		32 m	
	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
N	8850	1.26	2225	2.52	1000	3.78	575	5.04
W	3875	2.1	975	4.2	450	6.3	250	8.4

$N=$ Narrowest $\quad W=$ Widest $\quad \varnothing=$ Diameter

Solo CSI

Performance guide based on CSI 1000 W lamp, set at peaky field

	12 m		24 m		$36 m$		$48 m$	
	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
N	11825	1.8	2975	3.6	1325	5.4	750	7.2
W	7100	3.2	1775	6.4	800	9.6	450	12.8

$N=$ Narrowest $\quad W=$ Widest $\quad \varnothing=$ Diameter For full photometric information refer to data sheets.

PANI FOLLOWSPOTS

he Pani HMV range of daylight follow spots offers two narrow angle HMI luminaires with high efficiency elliptical mirror lens system for stage or outdoor work, and the powerful 2500 Zoom CID for long distance projection.

PANI HMV 1200/20 I200W HMI

3822003

10.5° max, beam spread, 200 mm dia. P.C. lens, built-in iris diaphragm, 4 beam shaping shutters, black-out disc, external ballast unit

PANI HMV

I200/35 I200W
HMI

3823508

6.5° max, beam spread, 230 mm dia. P.C. lens, built-in iris diaphragm, 4 beam shaping shutters, black-out disc, external ballast unit.

Accessories for Pani HMV 1200/20 \& HMV | 200/35
Manually operated dimming
shutter
$\mathbf{3 8 2 5 0 0 5}$

Hand operated 4-colour

	magazine
T.V. spigot M10	$\mathbf{2 6 8 6 9 0 3}$

Lamp

I200W HM|

PANI HMV 2500 Zoom 2500W CID

3825000
$6 \% 16^{\circ}$ variable spread beam $20-50 \mathrm{~cm}$ focal length zoom lens, built-in iris diaphragm, 4 beam shaping shutters, blackout disc, external ballast unit

Accessories for Pani HMV 2500 Zoom
Manually operated dimming
shutter
3825001
Hand operated 6-colour
magazine
3825002

Lamp
2500W HM
3422801
Note: For detailed information
on lamps refer to Section 6 .

LEKO I000W SPOTLIGHTS

These versatile 1000 W hard-edge spotights have proved their worth in major stage productions on both sides of the Atlantic.
LEKO II ($8^{\prime \prime} \times 13^{\prime \prime}$) I000W PROFILE 77021137.7 kg

4 arow bean ellipsoidal reflector spotlight with a 14° cut-off, with single $8^{\prime \prime}$ diameter lens, focal length $13^{\prime \prime}$.
Supplied with $1000 \mathrm{~W}, 240 \mathrm{~V}$ CP77 lamp (220 V may be specified), heat resisting fibre colour frame and 1.5 metres of fitted power cable with 15 amp plug (alternatively open ends may be specified).

LEKO 18 ($6^{\prime \prime} \times 16^{\prime \prime}$) 1000W PROFLLE
7702216 6.5kg
narrow beam ellipsoidal reflector spotlight with a 21° cut-off, using dual $6^{\prime \prime}$ diameter lenses, focal length $16^{\prime \prime}$.
Supplied with $1000 \mathrm{~W}, 240 \mathrm{~V}$ CP77 lamp (220 V may be specified), heat resisting fibre colour frame and 1.5 metres of fitted power cable with 15 amp plug (alternatively open ends may be specified).

LEKO $26\left(6^{\prime \prime} \times 12^{\prime \prime}\right)$ 1000W PROFILE 77022126.5 kg

4 n ellipsoidal reflector spotight with a medium beam of 30° cut-off with dual $6^{\prime \prime}$ diameter lenses, focal length $12^{\prime \prime}$.
Supplied with $1000 \mathrm{~W}, 240 \mathrm{~V}$ CP77 lamp (220 V may be specified), heat resisting fibre colour frame and 1.5 metres of fitted power cable with 15 amp plug (alternatively open ends may be specified).

LEKO $40\left(6^{\prime \prime} \times 9^{\prime \prime}\right)$ 1000W PROFLLE
77022096.9 kg

4 wider angled ellipsoidal A reflector spotlight with 45° cut-off, using dual $6^{\prime \prime}$ diameter lenses, focal length 9 "'. Supplied with $1000 \mathrm{~W}, 240 \mathrm{~V}$ CP77 lamp (220 V may be specified), heat resisting fibre colour frame and 1.5 metres of fitted power cable with 15 amp plug (alternatively open ends may be specified).

For full photometric information refer to data sheet.

Leko 18 Performance guide based on CP77 I000W lamp, set at peaky field
$\varnothing=$ Diameter

5 m		10 m		15 m		20 m	
Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
4600	1.85	1150	3.7	525	5.55	300	7.4

For full photometric information refer to data sheet.

Leko 26 Performance guide based on CP77 1000 W lamp, set at peaky field $\quad \varnothing=$ Diameter

5 m		10 m		15 m		20 m	
Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
3625	2.7	925	5.4	425	8.1	225	10.8

For full photometric information refer to data sheet.

Leko 40 Performance guide based on CP77 I 000 W lamp, set at peaky field
$\varnothing=$ Diameter

$5 m$		10 m		15 m		20 m	
Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
2900	4.1	725	8.2	325	12.3	200	16.4

For full photometric information refer to data sheet.

Accessories for Leko Spotlights

7701354

Pattern (gobo) holder

7701342

Colour frame for Leko 11

7701110

\square
Colour frame for Leko 18,26 or 40

7701108
High hat (snoot) for Leko 11
7701333
High hat (snoot) for Leko 18 , 26 or 40

7701332

Lamps

CP77. 1000 W
240 V lamp
3453101
220 V lamp
3453102

SECTION 4

STAGE LIGHTING

FLOODLIGHTS AND CYCLORAMA LIGHTS

NOCTURNE \& CODA FLOODLIGHTS/ CYCLIGHTS

NOCTURNE 1000
Mkll 1000W
FLOODLIGHT
$2272110{ }^{4.3 \mathrm{~kg}}$
\rightarrow edium angle symmetrical flood.
Supplied with 1000 W Class K4 240V long life linear lamp (220 V may be specified) and fitted with 1.5 metres of power cable (open ends).
For performance details please refer to dato sheet.

These complementary ranges of Flood/Cyc lights for linear halogen lamps, provide a choice of symmetrical or asymmetrical light distribution. Nocturne has a symmetrical distribution with extra intensity in the centre for more directional lighting or increased throw. Coda has an asymmetrical light distribution which ensures even colour wash when mounted close to the top of a Cyc or Backcloth.
Nocturnes are available as single units only in either 500W or 1000 W ratings, whilst Coda is available with a rating of 500 W , in single, triple and quadruple units.

NOCTURNE 500 MkII 500W
FLOODLIGHT
22720103.75 kg
edium angle symmetrical flood. Supplied with 500 W Class KI 240 V frosted long life linear lamp (220 V may be specified) and fitted with 1.5 metres of power cable (open ends).

For performance details please refer to dato sheet.
refer to data sheet.

CODA 500/I MkII 500W

CYCLIGHT
22711103.75 kg

- ingle flood with asymmetrical
distribution.
Supplied with 500W Class KI
240 V long life linear lamp (220V may be specified) and fitted with 1.5 metres of power cable (open ends).

Can be used at Im to 1.75 m from a backing at Im to 1.75 m centres to give even illumination from the top or bottom of the bockeloth.
For performance details please
refer to data sheet.

CODA 500/3 MkII 500W
 CYCLIGHT
 22713108.1 kg
 - Compartment
 cyc light/batten.

Supplied with 500 W Class K 240 V long life linear lamp (220 V may be specified) and fitted with 1.5 metres of power cable (open ends).

Con be used at 1 m to 1.75 m from a backing ot $/ \mathrm{m}$ to 1.75 m centres to give even illumination
from the top or bottom of the backcloth.
For performance details please refer to dato sheet.

Scale 1:15
Accessories for Coda/I Mk II, Coda/3 Mk II, Coda/4 Mk II Cy/Backlights
4 mm Wire safety mesh for use with all current 500 W units (an alternative to wire guard and holder for safety
glass)
2385623
Wire guard and holder for safety glass

2385619
Safety glass
(requires holder 23856 I9)
2772000
Additional colour frame
2726109
Non-rotatable barndoor
2321202
Additional cable gland (one
per unit required when interlinking units with 9-core cable)

2385505
9 -core cable, $1.5 \mathrm{~mm}^{2}$ for Coda 500/3, Coda 500/4 (per metre) $\quad \mathbf{3 5 0 5 1} 02$

Swivel crossbar for corner
top suspension for Coda 500/3 2625300
Swivel crossbar for corner
top suspension for
Coda 500/4
2625400
9 pin connectors can be
supplied.

Additional Accessories	
Hook clamp	$\mathbf{2 6 4 8 3 0 7}$
Safety chain	$\mathbf{2 6 0 6 4 ~ 1 8}$

CODA 500/4 MkII
500W
CYCLIGHT
2271410 l0. 1 kg
A. Compartment
cyc lightbatten.
Supplied with 500 W Class KI 240 V long life linear'lamp (220 V may be specified) and fitted with 1.5 metres of power cable (open ends).

Can be used ot I m to 1.75 m from a backing ot 1 m to 1.75 m centres to give even illumination from the top or bottom of the backeloth.
For performance details please refer to dato sheet.

SECTION 4

BEAMLIGHTS I000/500W

ค\% 015603171

STAGE LIGHTING BEAMLIGHTS

Punchlites produce that extra punch of light when the need is for high intensity lighting or effects over long throws, even when strong colour filters are in use. The beam spread is pre-determined by the choice of 1000W Par 64 fixed-beam halogen lamp.

PUNCHLITE

 1000WBEAMLIGHT
2210000 1.8kg
Supplied with I metre power cable, colour frame, integral wire guard and lampholder for CP60, CP61, CP62 Par 64 lamps.

Punchlite
Performance guide based on CP/60, CP/61, CP/62 lamps

8 m		16 m		24 m		32 m	
Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
CP60							
4300	1.7×1.3	1075	3.4×2.6	500	5.1×3.9	275	6.8×5.2
CP61							
3600	2.0×1.4	900	4.0×2.8	400	6.0×4.2	225	8.0×5.6
CP62							
1800	3.1×1.5	450	6.2×3.0	200	9.2×4.5	125	12.4×6.0

$\varnothing=$ Diameter
For full photometric information refer to data sheet.

Accessories for Punchlite Lamp rotation cap

2310000

\square
Additional $245 \mathrm{~mm}^{2}$ colour frame

2700000

	$\mathbf{2 7 0 0 0 0 0}$
Hook clamp	$\mathbf{2 6 4 8 3 0 7}$
Safety chain	$\mathbf{2 6 0 6 4 1 8}$

PAR 64 Lamps

1000W Class CP/60, $12 \times 9^{\circ}$ 240 V lamp

3426007
1000 W Class CP/61, $14 \times 10^{\circ}$
240 V lamp $\quad \mathbf{3 4 2 6 1 0 2}$

I000W Class CP/62, $24 \times 11^{\circ}$
240 V lamp
3426208
he new Beamlites with their integral transformers mounted axially to the lamp, make neat, compact units, producing a 5° beam spread of very high intensity to create dramatic lighting effects over very long throws.

Low voltage Beamlights are widely used in large theatres in continental Europe for general lighting, and are now finding increasing favour with U.K. lighting designers,

BEAMLITE 500

2210005 Low voltage 24 V 500W Beamlight 13.0 kg .

Supplied with integral toroidal transformer, 1.5 metres fitted power cable, colour frame and spill rings.

Beamlite 500
Performance guide based on E40 500W lamp

12 m		24 m		$36 m$		48 m	
Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
3825	1.15	975	2.3	425	3.45	250	4.6

$\varnothing=$ Diameter
For full photometric information refer to data sheet.

Accessories for Beamlites
Spare $365 \mathrm{~mm}^{2}$ fibre colour frame (Beamlite 1000)

2710010
Spare $275 \mathrm{~mm}^{2}$ fibre colour
frame (Beamlite 500)
2710005
Hook clamp, heavy duty
2687403
Safety chain $\quad 2606418$

Lamps

I000W K39d base internally crown silvered 24 V lamp (Beamlite 1000) $\mathbf{3 4 2 6 2 4 0}$
500W E40 base internally crown silvered 24 V lamp (Beamlite 500)

3426225

BEAMLITE 1000

$22 \mathbf{1 0 0 1 0}$ Low voltage 24 V
1000 W Beamlight 17.0 kg
Supplied with integral toroidal transformer,
1.5 metres fitted power cable, colour frame and spill rings.

Beamlite 1000
Performance guide based on K39d 1000 W lamp

12 m		24 m		36 m		48 m	
Lux	\varnothing	Lux	\varnothing	Lux	\varnothing	Lux	\varnothing
9325	1.1	2350	2.2	1050	3.3	600	4.4

$\varnothing=$ Diameter
For full photometric information refer to data sheet.

[^0]: M24 FX, 6.5 kg

[^1]: Golaxy 3 Motion Control Ponel

